1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the	subje	ect	Linea	r algebra, analytica	l and differen	tial geometry	
2.2 Holder of the subject			Lecturer Fechete Dorina, PhD				
2.3 Holder of the academic seminar/laboratory/project		Lectu	rer Tripe Adela, PhD)			
2.4 Year of	1	2.5	1	2.6 Type of the	Ex	2.7 Subject	Fundamental
study		Semester		evaluation		regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

3. Total estimated time (nours of didact	iic acti	vittes per semeste	1)	*	
3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/-/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14/-/-
		course		seminar/laboratory/project	
Distribution of time					33
Study using the manual, course support, bibliography and handwritten notes					14
Supplementary documentation using the library, on field-related electronic platforms and in field-					5
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					7
Tutorials					3
Examinations					4
Other activities.					

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

1	TI
4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5. Conditions (where applicable)

2. Collattions (Will	ore approve	
5.1. for the develop	oment of	
the course		
5.2.for the develop	ment of	
the academic		
seminary/laborator	y/project	
6. Specific skills ac	quired	
Professional skills		ementation of specific fundamental knowledge of mathematics, physics, chemistry, in lectrical engineering
Transversal skills		

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	 Identifying notions, describing theories and using specific language
general	 Correct explanation and interpretation of mathematical concepts, using specific

objective of	language
the subject	 Adequate identification of concepts, methods and techniques of mathematical
	demonstration
	 Use of mathematical reasoning in demonstrating mathematical results
7.2 Specific	• The student is able to practically apply the acquired theoretical knowledge.
objectives	

8. Contents*

of hours/
rvations
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2 2 2 2 2 2 2 2 2

Bibliography

- 1. I. Fechete, D. Fechete, Algebr Liniar . Teorie i probleme, Ed. Univ. Oradea, 2010
- 2. Gh. Ivan, Bazele algebrei liniare si aplicatii, Ed. Mirton, Timisoara, 1996
- 3. C. I. Radu, Algebra liniara, geometrie analitica si diferentiala, Ed. ALL, Bucuresti, 1996
- 4. M. Rosculet, Algebra liniara, geometrie analitica si diferentiala, Ed. Tehnica, 1987
- 5. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
1. Preliminaries (Sets, relations, functions, algebraic structures,	Exercise	1
matrices, determinants, linear systems)		
2. Vector spaces. Properties and examples	Exercise	1
3. Basis and dimension of a vector space	Exercise	1
4. Change of basis of a vector space	Exercise	1
5. Subspaces	Exercise	1
6. Linear functions. Definitions and properties	Exercise	1
7. The matrix associated with a linear function	Exercise	1
8. Eigenvectors and eigenvalues.	Exercise	1
9. Scalar products, norms and metrics	Exercise	1
10. Bilinear and quadratic forms	Exercise	1
11. The vector space of the Euclidean vectors	Exercise	1
12. The plane and the line	Exercise	1
13. Conic sections and quadric surfaces	Exercise	1
14. Curves and surfaces	Exercise	1

Bibliography

- 1. I. Fechete, D. Fechete, Algebr Liniar . Teorie i probleme, Ed. Univ. Oradea, 2010
- 2. C. I. Radu, Algebra liniara, geometrie analitica si diferentiala, Ed. ALL, Bucuresti, 1996
- 3. M. Rosculet, Algebra liniara, geometrie analitica si diferentiala, Ed. Tehnica, 1987
- 4. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981
- 5. S. Chirita, Probleme de matematici superioare, Ed. Didactica si Pedagogica, Bucuresti, 1989

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

- Training of specialists able to meet all current requirements of the labor market
- Ensuring adequate training for the study of cutting-edge fields of science and technology

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the	
			final mark	
10.4 Course	-	Written examination	50 %	
10.6 Seminar	-	Written examination	50 %	
10.8 Minimum performance standard:				
-				

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Spe	Special mathematics				
2.2 Holder of the subject			Lec	Lecturer Fechete Dorina, PhD				
2.3 Holder of the academic seminar/laboratory/project			Lec	ctui	rer Tripe Adela, PhD)		
2.4 Year of	1	2.5		1	2.6 Type of the	Ex	2.7 Subject	Fundamental
study		Semester			evaluation		regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

3. Total estimated time (nours of didact	iic acti	vittes per semeste	1)			
3.1 Number of hours per week	3	of which: 3.2 2		3.3 academic	1/-/-	
		course		seminar/laboratory/project		
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14/-/-	
		course		seminar/laboratory/project		
Distribution of time					58	
l						
Study using the manual, course support, bibliography and handwritten notes						
Supplementary documentation using the library, on field-related electronic platforms and in field-					10	
related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					16	
Tutorials						
Examinations					2	
Other activities.					5	

3.7 Total of hours for	58
individual study	
3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

1	TI
4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5. Conditions (where applicable)

5. Conditions (who	ere applicabl	e)
5.1. for the development of		
the course		
5.2.for the develop	ment of	
the academic		
seminary/laboratory/project		
6. Specific skills ac	quired	
Professional skills		mentation of specific fundamental knowledge of mathematics, physics, chemistry, in ectrical engineering
Transversal skills		

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	-	Identifying notions, describing theories and using specific language
general	•	Correct explanation and interpretation of mathematical concepts, using specific

objective of	language
the subject	 Adequate identification of concepts, methods and techniques of mathematical
	demonstration
	 Use of mathematical reasoning in demonstrating mathematical results
7.2 Specific	■ The student is able to practically apply the acquired theoretical knowledge.
objectives	

8. Contents*

Teaching	No. of hours/
methods	Observations
lecture	2
lecture	2
lecture	2
	methods lecture

Bibliography

- 1. C. I. Radu, Algebra liniara, geometrie analitica si diferentiala, Ed. ALL, Bucuresti, 1996
- 2. M. Rosculet, Algebra liniara, geometrie analitica si diferentiala, Ed. Tehnica, 1987
- 3. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981
- 4. V. Brinzanescu, O. Stanasila, Matematici speciale, Ed. ALL, Bucuresti, 1994
- 5. S. Gal, S. Scurtu, Matematici speciale, Oradea, 1998
- 6. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin probleme si exercitii, Ed. Dacia, Cluj-Napoca

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
1. First order differential equations: Generalities;	Exercise	1
2. First order differential equations solvable by quadratures;	Exercise	1
3. First order linear differential equation;	Exercise	1
4. The existence and uniqueness for the Cauchy problem solution;	Exercise	1
5. Approximate methods for solving differential equations.	Exercise	1
6. Higher order differential equations: Generalities;	Exercise	1
7. n differential linear differential equation with variable coefficients;	Exercise	1
8. n-order linear differential equation with constant coefficients.	Exercise	1
9. Systems of differential equations	Exercise	1
10. Vector calculus identities: Gradient, Divergence and Curl	Exercise	1
11. Fourier series	Exercise	1
12. The complex shape of the Fourier series; Fourier Integrals and	Exercise	1
Transforms		
13. Operational calculus; The Laplace transform	Exercise	1
14. Applications of operational calculus	Exercise	1

Bibliography

- 7. C. I. Radu, Algebra liniara, geometrie analitica si diferentiala, Ed. ALL, Bucuresti, 1996
- 8. M. Rosculet, Algebra liniara, geometrie analitica si diferentiala, Ed. Tehnica, 1987
- 9. Gh. Sabac, Matematici speciale, E.D.P., Bucuresti, 1981
- 10. V. Brinzanescu, O. Stanasila, Matematici speciale, Ed. ALL, Bucuresti, 1994
- 11. S. Gal, S. Scurtu, Matematici speciale, Oradea, 1998
- 12. Gh. Micula, P. Pavel, Ecuatii diferentiale si integrale prin probleme si exercitii, Ed. Dacia, Cluj-Napoca

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

- Training of specialists able to meet all current requirements of the labor market
- Ensuring adequate training for the study of cutting-edge fields of science and technology

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	-	Written examination	50 %
10.6 Seminar	-	Written examination	50 %
10.8 Minimum performar	nce standard:		

6

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

3				ANALYSIS AND SYNTHESIS OF NUMERICAL DEVICES				
2.2 Holder of the subject			Pro	Prof. GERDA ERICA MANG				
2.3 Holder of the academic seminar/laboratory/project			Ass	oc. prof. KOVENDI ZO	LTA	N		
2.4 Year of study I 2.5 Semester			2.6 Type of the evaluation	VP	2.7 Subject regi	me	DD	

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 seminar/laborator/pr	0/1/0
3.4 Total of hours from the curriculum	42	Of which: 3.5 course	28	3.6 seminar/laborator/pr	0/14/0
Distribution of time					33
Study using the manual, course support, biblic	ograp	hy and handwritten note	es		10
Supplementary documentation using the library, on field-related electronic platforms and in field-related places				9	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				14	
Tutorials				2	
Examinations				2	
Other activities.					

3.7 Total of hours for individual study	33
3.9 Total of hours per semester	75
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) -
4.2 related to skills	_

5. Conditions (where applicable)

-	laboratories; - A maximum of 3 works can be recovered during the semester (20%);
	Room equipped with computers and specific programs - Mandatory attendance at all
5.1. for the development of the course	Classroom equipped with video projector - Attendance at least 50% of the courses

Professional skills C2. Working with fundamental concepts of computer science, information technology and communications Transversal skills CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	 Introduction to Boolean algebra Initiation in the analysis and synthesis of the main categories of combinational circuits. initiation into the theory and practice of logic devices and circuits; acquiring the practical skills necessary for the analysis of logical schemes, of the logical design of some combinational circuits that are the basis of the complex architectures of the computer systems;
7.2 Specific objectives	using the computer in order to design the circuits, to verify from a functional point of view the designed scheme

8. Contents*

working

8.1 Course	Teaching methods	No. of hours/ Observations
CHAPTER 1. Boolean algebra. Its application to the study of switching circuits. Definition of Boolean algebra. Inverter circuit. The transfer function of a switching circuit. Operations with functions. Normal disjunctive expression. Normal conjunctive expression. Complete operating systems. Modes of representation. Dual expressions. Classes of Boolean functions. Autodual functions	 Powerpoint presentation; free discussions; 	2
	Powerpoint presentation; free discussions;	3

CHAPTER 3. Analysis of combinational circuits with gates or logic elements. Synthesis of combinational circuits with gates or logic elements. Analysis of logic networks with NAND or NOR circuits. Synthesis of networks with logical elements. Synthesis of two-level networks. Synthesis of two-tier networks with NAND elements. Synthesis of circuits with NOR elements.	Powerpoint presentation; free discussions	2
CHAPTER 4. Examples of combinational logic circuits. The summation circuit for a rank. Adder for several ranks. Selector circuit (multiplexer). Distributor circuit (demultiplexer). Code converter. The decoder. The encoder. Numerical comparators. Parity detector and generator. Programmable logic areas. Minimizing programmable logic areas	Powerpoint presentation; free discussions	3
CHAPTER 5. Sequential circuits. Elementary sequential circuits. Synchronous RS type CBB. Synthesis of the tilting circuit D with synchronous RS. J-K flip-flop circuit. J-K flip-flop circuit "MASTER - SLAVE". Synthesis of sequential circuits	Powerpoint presentation; free discussions	2
CHAPTER 6. Counters. Asynchronous counter modulus $M \neq 2^n$. Synchronous counters. Synchronous binary decimal counter. Reversible counter. Counter without asynchronous inputs	Powerpoint presentation; free discussions;	2

Bibliography

- 1. Mang Gerda Erica, Analiza i sinteza circuitelor logice circuite combina ionale, Editura Universit ii din Oradea, ISBN 973-8219-96-5, 2001
- 2. Mang Gerda Erica, Analiza i sinteza circuitelor logice circuite secven iale, Editura Universit ii din Oradea, ISBN 973-8083-72-9, 2000
- 3. Mang Gerda Erica, Ppt. slide-uri, 2012
- 4. Mang Gerda Erica, Ppt. slide-uri, 2010
- 5. John M. Yarbrough, Digital Logic Applications and Design, West Publishing Company, 1997

8.2 Academic seminar/laboratory/project	Teaching methods	No. of hours/ Observations
Seminary		
Laboratory		
Introducing the Xilinx program. Making a device for choosing the optimal path.	Tests. Discussions. Individually work and also in small groups of students	1
One-bit adder.	Tests. Discussions. Individually work and also in small groups of students	1
8-bit adder.	Tests. Discussions. Individually work and also in small groups of students	1
7-segment decoder.	Tests. Discussions. Individually work and also in small groups of students	1

Multiplexer circuit.	Tests. Discussions. Individually work and also in small groups of students	1
Code converter.	Tests. Discussions. Individually work and also in small groups of students	1
Parity generator	Tests. Discussions. Individually work and also in small groups of students	1
8.4 Project		

Bibliography

Mang E., Mang I., C.Popescu., Proiectarea logica a circuitelor combinationale. Aplicatii, 2010 Editura Universit ii din Oradea, ISBN 978-606-10-0328-0, 122pag

Mang Gerda Erica, Analiza si Sinteza circuitelor logice – Circuite combinationale. ISBN: 978-606-10-13478-4, 2014

Mang Gerda Erica, Popescu Constantin, Proiectare logica cu circuite FPGA – partea I, Universitatea din Oradea, 60 pg, 2006, actualizat in format electronic 2012,

Dave Van den Bout, Practical Xilinx Designer Lab Book, Prentice Hall, 1997

Xilinx, Lab Projects Documentation, Foundation Series Express, Documentatic Xilinx, 2018

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is adapted to the requirements of specialized companies

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
1		Final course evaluation and problem solving	60%
10.5 Seminary			
10.6 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard For 10: the presence and activity at seminars,	Weekly evaluation of the laboratory preparation Tracking the activity along the way, practical applications.	20%
10.7 Project			
10.8 Minimum perform	nance standard:		

- Carrying out projects respecting ethical and responsible behavior;
- Knowledge of the design method used
 Design of elementary circuits

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		Mo	Modern Languages – English (1)				
2.2 Holder of the si	ubject		Lecturer PhD. Abrudan Caciora simona Veronica					
2.3 Holder of the a	caden	nic						
laboratory/project								
2.4 Year of study	I	2.5 Semesto	er	1	2.6 Type of the evaluation	PE	2.7 Subject regime	CD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2	3.3 academic seminar	1
		course	/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	3.6 academic seminar/	14
		course	laboratory/project	
Distribution of time				hours
Study using the manual, course support, bibliography and handwritten notes			36	
Supplementary documentation using the library, on field-related electronic platforms and in			12	
field-related places				
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	tfolios and essays	18
Tutorials			4	
Examinations			2	
Other activities.				

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

6. Specific skills acquired	
laboratory/project	-
the academic	- The seminar can be carried out face to face or online
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the course	
5.1. for the development of	

Professional skills	
Transversal skills	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

I III ON JUELI ON	of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	The seminar aims to be, for the students who do not have English as main
general	subject, a means of improving the English knowledge they had acquired in high
objective of	school, in order to reach the level of language competence that would alow them
the subject	to understand and produce accurate academic and scientific texts in English, and
	understand written or verbal texts on topics related to the field of engineering in
	general and the specialization they have chosen, in particular. During the
	seminar, students are given the opportunity to produce written texts or to express
	themselves verbally, in English. In order to achieve these goals, the textbooks
	elaborated by the foreign languages team of the Department of Automated
	Systems Engineering and Management are used, as well as specialized books,
	published by well-known international publishing houses.
7.2 Specific	Acquiring field-related vocabulary in English and the completion of
objectives	documents that are specific to the chosen field of study

8. Contents*

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Introductory seminar. Test for the evaluation of students'level of English language skills.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 2. What is Engineering? Reading. Vocabulary and conversation exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3 The plural of nouns: Revision and application exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Engineers – Education and Specializations. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 5. The degrees of comparison for adjectives and adverbs (revision exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 6: Engineering Design. Technical Drawing in Engineering. Types of Views Used in Engineering Drawing.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Present Tense Simple and Continuous (Revision exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: Computer-Aided Design and Drawing. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: The Past Tense Simple and The Past Tense Continuous (Revision and exercises).	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Engineering Materials. Types of Materials and The Properties of Materials Used in Engineering. (Listening and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: The Present Perfect Tense Simple: The Present Perfect Tense Continuous. (Revision and exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 12: Processes Applied to Engineering Materials. Forming Materials into Shapes. (Reading and conversation exrcises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: The Past Perfect Tense Simple and Continuous (Revision and exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: Basic Concepts Related to Electrical Engineering: the Electric Field, the Magnetic Field, Electrostatics, Electrokinetics.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universit ții "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, English for Computer Science Students, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Ben ea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, *English for ICT Studies in Higher Education Studies*, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Seminar	Minimum required	Written exam	100 %
	conditions for passing	Students rare required to	
	the exam (mark 5): in	solve exercises, meant at	
	accordance with the	testing the knwledge	
	minimum performance	they acquired during the	
	standard it is necessary	semester	
	to know the fundamental		
	notions required in the		

subjects, without	
presenting details on	
them	
For 10: thorough	
knowledge of all subjects	
is required	

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics/ Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Modern Languages – English (1I)					
2.2 Holder of the subject			Lecturer PhD. Abrudan Caciora simona Veronica					
2.3 Holder of the academic								
laboratory/project								
2.4 Year of study	I	2.5 Semeste	er	1I	2.6 Type of the	PE	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

2. Total estimated time (modes of didden				
3.1 Number of hours per week		of which: 3.2	3.3 academic seminar	1
		course	/laboratory/project	
3.4 Total of hours from the curriculum		Of which: 3.5	3.6 academic seminar/	36
		course	laboratory/project	
Distribution of time				
Study using the manual, course support, bibliography and handwritten notes				
Supplementary documentation using the library, on field-related electronic platforms and in				
field-related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				
Tutorials				
Examinations				
Other activities.				

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

	· ····································
4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	
the course	
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the academic	- The seminar can be carried out face to face or online
laboratory/project	
6. Specific skills acquired	

Professional skills	
Transversal skills	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

I III ON JUELI ON	. The objectives of the discipline (resulting from the grid of the specific competences acquired)					
7.1 The	The seminar aims to be, for the students who do not have English as main					
general	subject, a means of improving the English knowledge they had acquired in high					
objective of	school, in order to reach the level of language competence that would alow them					
the subject	to understand and produce accurate academic and scientific texts in English, and					
	understand written or verbal texts on topics related to the field of engineering in					
	general and the specialization they have chosen, in particular. During the					
	seminar, students are given the opportunity to produce written texts or to express					
	themselves verbally, in English. In order to achieve these goals, the textbooks					
	elaborated by the foreign languages team of the Department of Automated					
	Systems Engineering and Management are used, as well as specialized books,					
	published by well-known international publishing houses.					
7.2 Specific	Acquiring field-related vocabulary in English and the completion of					
objectives	documents that are specific to the chosen field of study					

8. Contents*

o. contents		I
8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Material types: Metals and non-metals. Elements, compounds and mixtures. Composite materials. Vocabulary and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter Polymers. Natural and synthetic polymers. Thermoplastics and thermosetting plastics. Reading. Vocabulary and conversation exercises. Revision of numerals.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3: Material properties (I). Tensile strength and deformation. Elasticity and plasticity. Stages in elastic and plastic deformation. Vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Material properties (I). Hardness. Fatigue, fracture toughness and creep. Basic thermal properties. Reading and vocabulary exercises. Chapter 5. Interconnection: vocabulary relating to attaching and supporting and fitting together different parts, specific to the	Free exposure, with the presentation of the course with video projector, on the board or online Free exposure, with the	1h
engineering domain. (revision exercises)	presentation of the course with video projector, on the board or online	1 h
Chapter 6: Mechanical fasteners (I). Bolts. Preload in bolted joints. Washers. Listening and speaking exercises. Revision: Countable and uncountable nouns.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Mechanical fasteners (2). Screws. Screw anchors and rivets Vocabulary and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: Non-mechanical joints: welding, brazing, soldering, adhesives. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: Referring to types of force and deformation. The concept of failure in engineering Vocabulary and speaking exercises	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Expressing numbers and calculations. Decimals and fractions. Addition, subtraction, multiplication and division. (Listening and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: Referring to the electrical supply. Direct current and alternating current. AC generation and supply. DC generation and use (Reading and exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 12: Referring to circuits and components. Simple circuits. Mains AC circuits and switchboards. Printed and integrated circuits. Electrica land electronic components. (Reading and conversation exrcises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: Referring to engines and motors. Types and functions of engines and motors. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: Referring to energy and temperature. Forms of energy. Energy efficiency. Work and power.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universit ții "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, English for Computer Science Students, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Ben ea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, *English for ICT Studies in Higher Education Studies*, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Seminar	Minimum required	Written exam	100 %
	conditions for passing	Students rare required to	
	the exam (mark 5): in	solve exercises, meant at	
	accordance with the	testing the knwledge	
	minimum performance	they acquired during the	
	standard it is necessary	semester	
	to know the fundamental		
	notions required in the		

subjects, without	
presenting details on	
them	
For 10: thorough	
knowledge of all subjects	
is required	

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject			Mo	echa	nics			
2.2 Holder of the subject			Co	Conf. PhD eng. Tiberiu Barabas				
2.3 Holder of the academic			Conf. PhD eng. Tiberiu Barabas					
laboratory/project								
2.4 Year of study	Ι	2.5 Semeste	er	1	2.6 Type of the	Ex	2.7 Subject regime	DD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/-	
		course		laboratory/project		
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6	14/-	
		course		academiclaboratory/proj		
				ect		
Distribution of time					hours	
Study using the manual, course support, bibliography and handwritten notes					28	
Supplementary documentation using the library, on field-related electronic platforms and in						
field-related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					16	
Tutorials						
Examinations						
Other activities.						

3.7 Total of hours for			
individual study			
3.9 Total of hours per	104		
semester			
3.10 Number of credits	4		

4. Pre-requisites(where applicable)

William Telephone (Where approache)					
4.1 related to the	(Conditions)				
curriculum					
4.2 related to skills					

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	6. Specific skills acquired						
Professional skills	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering.						
Transversal skills	 CT1. Application, in the context of legislative compliance, of intellectual property rights (including technology transfer), product certification methodology, principles, norms and values of professional ethics code in their own strategies for rigorous, efficient and accountable work. CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working. 						

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)						
7.1 The	• Study and knowledge of basic elements of mechanical engineering: kinematics					
general	and dynamics of rigid solid, calculation of configuration and kinematics of some					
objective of	mechanisms.					
the subject	Forming the technical horizon of the future specialist.					
7.2 Specific	The course aims in particular at providing knowledge and methods of study					
objectives	for the balance and movement of material bodies; such knowledge being necessary for students who are preparing in the field of Automation and applied informatics to understand, and then to be able to design new automation installations from the point of view of their organs, of the parts in balance under the action of some types of moving forces.					
	• The laboratory offers the skill of engineering methods to approach and solve problems related to the calculation of mechanical elements.					

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Cap1. Introductions. Cap2. Statics of the material point. Cap3. Statics of the rigid solid. Cap4. Kinematics of the material point. Cap5. Theorems and general methods in dynamics. Cap6. Structure of a mechanical system.	Free exposure, with the presentation of the course with video projector, on the board or online	2h 4h 6h 6h 6h 4h

Bibliography

- 1. Cornel Marin, Teodor Huidu, Mecanic, Editura Printech, Bucure ti, 1999.
- 2. Dumitru Luca, Cristina Stan, Mecanic clasic, Universitatea Al. I. Cuza Ia i, 2007
- 3. Florescu Daniela, Curs de mecanic tehnic, Editura Alma mater, Bac u, 2007
- Octavian G. Mustafa, Elemente de mecanica punctului material i a solidului rigid, Universitatea din Craiova, 2002
- 5. Tudose, Sandu-Ville, Fl., Racocea, C., Farcas, Fl., Hanganu, L., **Organe de ma ini i inginerie mecanic** aplicatii, Editura Gh. Asachi Iasi, 2003
- 6. Vlase Sorin., Mecanica. Statica. Ed. Infomarket, Bra ov, 2008
- 7. Vlase Sorin., Mecanica. Cinematica. Ed. Infomarket, Bra ov, 2007
- 8. Vlase Sorin. **Mecanica. Dinamica**. Ed. Infomarket. Bra. ov. 2005

8. Viase Soriii., Mecanica. Dinamica. Ed. Illioniarket, Dia Ov. 2003					
8.2 Academic laboratory	Teaching	No. of hours/			
	methods	Observations			
	Students receive laboratory papers at least one week				
1. Presentation of the laboratory and of the labor protection norms.	in advance, study	2 h			
2. Statics of the material point. Vector operations – computer	them, inspect	2 h			

 application. 3. Reduction of competing coplaning forces - computer application. 4. Reduction of competing spatial forces - computer application. 5. Reduction of parallel force systems - computer application. 6. Reduction of force and moment systems - computer application. 7.Closing the situation at the laboratory. 	them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part of the work under	2 h 2 h 2 h 2 h 2 h
	of the work under the guidance of	
	the teacher	

Bibliography

- 1. Teodor Huidu, Cornel Marin, Probleme rezolvate de mecanic, Editura Macarie, Târgovi te, 2001
- 2. Tiberiu Barabas, **Fascicule pentru lucr ri de laborator**, Universitatea din Oradea.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• There is strong collaboration with the economic environment in the region (Celesitica, Comau, GMAB, etc.), focused on issues and topics of interest to them.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
Type of activity	10.1 Evaluation criteria	The evaluation can be	final mark
		done face-to-face or	Tillal Illal K
		online	
10.4 Course	Minimum required	Written exam	70 %
10.4 Course	conditions for passing	Students receive for	70 70
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary	an application.	
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10:thorough		
	knowledge of all subjects		
10.5 Laboratari	is required	T44:1	30%
10.5 Laboratory	Minimum required	Test + practical	30%
	conditions for promotion	application	
	(grade 5): in accordance	At each laboratory	
	with the minimum	students receive a test	
	performance standard	and a grade. Each	
	recognition of the stands	student also receives a	
	used to carry out the	grade for laboratory	
	laboratory works,	work during the semester	
	without presenting	and for the laboratory	
	details on them	work file. This results in	
	For 10: detailed	an average for the	
	knowledge of how to	laboratory.	
	perform all laboratory		
	work		

10.6 Minimum performance standard:

• Knowledge of the basic elements in the kinematic and dynamic calculation of some components in the structure of mechanical systems.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject				Operating systems in automation				
2.2 Holder of the subject			As	Assoc. Prof. PhD eng. Drago Cristian Spoial				
2.3 Holder of the academic			As	Assoc. Prof. PhD eng. Drago Cristian Spoial				
laboratory/project								
2.4 Year of study	I	2.5 Semest	er	2	2.6 Type of the evaluation	VP	2.7 Subject regime	DS

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic laboratory	1
		course			
3.4 Total of hours from the curriculum	4	Of which: 3.5	28	3.6 academic laboratory	14
	2	course			
Distribution of time					
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in					10
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14
Tutorials					2
Examinations					4
Other activities.					

3.7 Total of hours for individual	58
study	
3.9 Total of hours per semester	100
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of computer using, informatics, programming
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);
- The frequency at laboratory hours below 70% leads to the restorati	
	the discipline
6. Specific skills acquired	

Professional skills	C2. Operation with fundamental concepts of computer science, information and communications technology
Transversal skills	 TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	Reasoned using of the concepts of informatics and computer technology for				
general	solving well-defined problems in systems engineering field and in applications				
objective of	based on hardware and software using, in industrial systems or informatic				
the subject	systems.				
7.2 Specific	• Using of integrated hardware-software design (co-design) and of				
objectives	programming engineering as development methodologies, including the				
	modelling at system level.				

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction in operating systems 1.1. Generalities 1.2. Classification of the operating systems 1.3. The evolution of the operating systems 1.4. Modern operating systems	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
2. UNIX operating system. Case study 2.1. Introduction 2.2. Short history 2.3. UNIX architecture 2.4. UNIX functionalities 2.5. UNIX implementations. Linux Fedora Project. Live CD 2.6. Commands and graphical interfaces in UNIX 2.7. UNIX documenting	Free exposure, with the presentation of the course with video projector, on the board or online	4 h
3. UNIX files system. Case studies 3.1. Generalities 3.2. Partitions and swap space 3.3. Linux-Fedora installation. Boot Menu, editing Fedora Boot Menu 3.4. Files types 3.5. Primary commands for files and directories 3.6. Special characters in UNIX	Free exposure, with the presentation of the course with video projector, on the board or online	4 h
 4. Files and directories administration. Case studies 4.1. Introduction 4.2. Command line and basic commands 4.3. Commands for harddisks and partitions 	Free exposure, with the presentation of the course with video projector,	4 h

4.4. Searching files on the disk and strings in files	on the board or	
4.5. Files sorting	on the board of	
4.6. Archiving and compressing files.	Offfice	
4.0. Archiving and compressing thes.		
	Free exposure,	
5. Text editors. Case studies	with the	
5.1. Introduction	presentation of	
5.2. vi editor	the course with	2 h
5.3. pico editor	video projector,	
	on the board or	
(D	online	
6. Processes. Case studies	Free exposure, with the	
6.1. Generalities	presentation of	
6.2. UNIX tools for processes visualization	the course with	2 h
6.3. Running processes in background. Jobs and daemons	video projector,	۵ 11
6.4. Signals	on the board or	
6.5. Important processes	online	
7. UNIX shells. Case studies	Free exposure,	
7.1. Definition and functions	with the	
7.2. Variants of shell	presentation of	
7.3. Short history	the course with	2 h
7.4. Shells for Linux	video projector,	
7.5. System initialisation and login programm	on the board or	
7.6. Writing a shell-script	online	
<u> </u>	Free exposure,	
8. Configurations and network services	with the	
8.1. Generalities	presentation of	
8.2. ARPA services	the course with	2 h
8.3. Integration with other operating systems	video projector,	
	on the board or online	
	V	
0 G	Free exposure, with the	
9. Security	presentation of	
9.1. Generalities	the course with	4 h
9.2. System security	video projector,	
9.3. Network security	on the board or	
	online	
10. Graphical environment. Case studies	Free exposure,	
10.1. Generalities	with the	
10.2. Graphical interface in Linux	presentation of	•
10.3. Starting and stoping the graphical interface	the course with	2 h
10.4. Server X configuration	video projector,	
	on the board or online	
	Offffile	
Total		28 h

Bibliography

- 1. Spoial Drago -Cristian, **Sisteme de operare**, Electronic format course for students, 2018
- 2. Rughini R., Deaconescu R., Milescu G., Bardac M., **Introducere în sisteme de operare**, Editura Printech
- 3. D. Acost chioaie, **Administrarea i Configurarea Sistemelor Linux**, edi ia a 3-a, Editura Polirom, 2005
- 4. D. Acost chioaie, Sabin Buraga, **Utilizare Linux. No iuni de baz i practic**, Editura Polirom, 2004
- 5. T. Ionescu, Daniela Saru, J. Floroiu, **Sisteme de operare. Principii i func ionare**, Editura Tehnic , Bucure ti, 1997
- 6. P livan, H. P livan, Linux pentru avansa i, Editura Tehnic, Bucure ti, 2001
- 7. A. Tanenbaum, **Sisteme de operare moderne**, edi ia 2-a, Ed. Biblos, Bucure ti, 2004

8.	UNIX – Tutorial - Internet
9.	*** "Operating Systems", Wikipedia, http://en.wikipedia.org/wiki/Operating_system

10. *** http://fedoraproject.ro/

11. *** http://mirrors.fedoraproject.org/publiclist/

8.2 Academic laboratory	Teaching	No. of hours/
·	methods	Observations
 Linux-Fedora installation Linux-Fedora – introductory aspects – first commands System variables – input/output operations – network applications Text editors – Processes – Files and directories Creating users and groups. Rights concerning the files and directories 	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a random test	1 h 2 h 2 h 2 h 2 h
 6. Shell programming. Shell scripts 7. Server configuration in Linux 8. Recoveries and closing the situation at the laboratory 	during the laboratory. The students carry out the practical part of the work under the guidance of the teacher	2 h 2 h 1 h
Total		14 h

Bibliography

1. Drago Cristian Spoial , Alina-Diana Pavel, *Sisteme de operare*, îndrum tor de laborator, ediție CD-ROM, ISBN 978-606-10-1677-8, 2015

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics study program from other university centers that have accredited this specialization (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Bucharest, Gh. Asachi University of Iasi, etc.). The working principles with Linux-Unix operating system are very important for the graduated students in their employment in the field of automation (Nidec, Comau, Plexus, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (grade 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Written and oral verification during the semester There are 2 verifications during the semester. The subjects are divided in 2 parts. For each of them the verification consists of a quiz with questions of theory and computer applications from all the courses. The final grade is calculated as the mean of the 2 grades obtained from the both verifications.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum	Practical application Each student receives a grade for laboratory work during the semester	40%

out the laboratory works, without presenting details on them For 10: complete performing of all laboratory works
--

10.6 Minimum performance standard:

Course: usage of the concepts and instruments from the computer science and information and communications technology field, in order to solve specific problems for system engineering. **Laboratory:** completion of the content of all laboratory works; participation to all the laboratory works.

1. Data related to the study program

in a more in the state of the program	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control Systems Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

		~J						
2.1 Name of the subject			Inc	lustr	rial electrotehnics			
2.2 Holder of the subject			Pro	Prof.DrIng.Ec. Silaghi Alexandru Marius				
2.3 Holder of the academic			.l.	Dr.I	ng. Pantea Mircea D	nu		
seminar/laboratory/project								
2.4 Year of study	II	2.5 Semesto	er	4	2.6 Type of the	Ex	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time					33h
Study using the manual, course support, bibliography and handwritten notes					14
Supplementary documentation using the library, on field-related electronic platforms and in field-					6
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					8
Tutorials					2
Examinations 3					3
Other activities.					

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of mathematics and physics
curriculum	
4.2 related to skills	PC usage, Electrotehnics

5. Conditions (where applicable)

5.1. for the development of	- attending at least 50% of the course			
the course	- the course can be held face to face or online			
5.2.for the development of	- mandatory presence at all laboratory and seminar hours;			
the academic	- students will perform the hours with the lab work;			
seminary/laboratory/project	- maximum 2 works (30%) can be recovered during the semester;			
	- frequency at laboratory less than 70% leads to the restoration of			
	discipline.			
	- the laboratory can be carried out face to face or online.			
6. Specific skills acquired				

30

	C1. Application of the fundamental knowledge of mathematics, physics, chemistry, specific in the field of electrical engineering.
Professional skills	
Transversal skills	CT2. Identify roles and responsibilities in a multi-specialized team decision-making and assigning tasks, with the application of relationship techniques and efficient work within the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	. The objectives of the discipline (resulting from the grid of the specific competences acquired)				
7.1 The	 The course "Industrial Electrotechnics" proposes a familiarization of students in 				
general	the field of Automatics and Applied Informatics with some knowledge in				
objective of	theoretical electrical engineering and electrical machines, its objective being to				
the subject	present different calculation methods necessary to solve problems in industrial				
-	electrical engineering, classical or modern, and the laboratory works refer to the				
	sizing of some assemblies, the correct use of the measuring devices and to the				
	introduction of some industrial applications.				
7.2 Specific	 Its objective is to present some calculation methods, in a unitary framework, 				
objectives	which are necessary to solve the problems in classical or modern industrial				
	electrical engineering.				
	 Without neglecting the theoretical aspect of the treated problems, a greater 				
	emphasis was placed on the practical applications, the course containing				
	calculation examples.				
	■ The laboratory part familiarizes students with practical aspects regarding the				
	operation of electrical systems.				
	·				

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Chapter 1. INTRODUCTORY CONSTITUENTS	Free exposure,	4 h
	with the	
	presentation on-	
	line	
Chapter 2. SINGLE-PHASE ELECTRICAL TRANSFORMER	Free exposure,	6 h
	with the	
	presentation on-	
	line	
Chapter 3. PRESENTATION OF DIRECT CURRENT MACHINES	Free exposure,	6 h
	with the	
	presentation on-	
	line	
Chapter 4. PRESENTATION OF AC MACHINES	Free exposure,	6 h
	with the	
	presentation on-	
	line	<i>c</i> 1
Chapter 5. MATERIALS PROCESSING IN	Free exposure,	6 h
ELECTROMAGNETIC FIELD	with the	
	presentation on-	
T 1	line	20.1
Total Pilitan and the		28 h
Bibliography Siloghi M. Maghier T. Leves T. Flootrotchnic industrial. Editure University	ii din Oradaa 2002	ISDN 072 612 111 4
Silaghi, M., Maghiar, T, Leuca, T., -Electrotehnic industrial, Editura Universit	ii diii Oradea, 2002,	ISDN 973-013-111-4

Pantea, M.D., Silaghi, A.M., Electrotehnica, Editura Universit ii din Oradea, 2010, ISBN 978-606-10-0011-1 Silaghi, A.M., Pantea, M.D. - Introducere in Electrotehnica, Editura Risoprint, 2010, ISBN 978-973-53-0258-0 Silaghi, A.M., Pantea, M.D., Silaghi, Helga – Electrotehnica industriala, Editura Universit ii din Oradea, 2010, ISBN 978-606-10-0186-6

9/8-606-10-0186-6		
8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
	methods	Observations
1. Presentation of the topic and the laboratory. Instructions for work	Students receive	2 h
safety technique. Measurement of voltage, current. Resistors in series	lab reports at	
and parallel.	least one week	
	before, study	
	them, study	
	them, and give	
	a theoretical test	
	at the beginning	
	of the lab. Then,	
	students	
	complete the	
	practical part of	
	the paper under	
	the guidance of	
	the guidance of the teacher.	
	Free	
	presentation on	
	how to mount	
	the assemblies	
	and check them	
	after the	
	students have	
	finished the	
	assembly.	2.1
2. Superposition and maximum power transfer theorem		2 h
3. Star-delta and triangle-star transfiguration. Detection of errors in		2 h
direct current circuits		
4. DC motor speed measurement. Reverse electromotive voltage of a		2 h
DC motor		
5. The load of a DC motor		2 h
6. Speed adjustment, efficiency, torque and power		2 h
7. Program for the recovery of laboratory work and verification of		2 h
the acquired concepts		
Total		14 h
Bibliography		
Hantila, I., F.,, Silaghi, M., Leuca, TElemente de circuit cu efect de camp		
electromagnetic,Editura ICPE,Bucuresti,1998 Maghiar,T.,Leuca,T.,Silaghi,M.,Marcu,DCircuite electrice liniare in regim		
permanent sinusoidal. Îndrumator de laborator Litografiat Universitatea		
Oradea, 1997		
Maghiar, T., T., Silaghi, Leuca, T., Pantea, M., Soproni, DElectrotehnic		
industrial . Îndrum tor de laborator, Editura Universit ii din Oradea, 2001,		
ISBN 973-613-066-5		
Pantea, M.D , Silaghi , A.M Electrotehnica, Editura Universit ii din		
Oradea, 2010, ISBN 978-606-10-0011-1		
Silaghi, M., Maghiar, T., Leuca, T., -Electrotehnic industrial, Editura		
Universit ii din Oradea, 2002,ISBN 973-613-111-4		
Pantea, M.D., Silaghi, A.M. – Electrotehnica, Editura Universit ii din		
Oradea, 2010, ISBN 978-606-10-0011-1		
Silaghi , A.M., Pantea, M.D Introducere in Electrotehnica, Editura		
Risoprint, 2010, ISBN 978-973-53-0258-0 Silaghi, A.M., Pantea, M.D., Silaghi, Helga – Electrotehnica industriala,		
Editura Universit ii din Oradea, 2010, ISBN 978-606-10-0186-6		
Editara Offiveroit in ani Oradea, 2010, 18DN 770-000-10-0100-0		<u> </u>

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

■ The content of the discipline is found in the curriculum of Automation and Applied Informatics and other university centers in Romania that have accredited these specializations, so knowledge of their basic notions in Electrical Engineering is a stringent requirement of employers in the field (Plexus, Faist Mekatronics, Celestica, Comau, GMAB etc) from the Oradea Industrial Park area.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard 1pt ex officio - attendance at the course 4PT 4 medium-level subjects - For 10: 1pt ex officio - attendance at the course 9PT 9 medium-level subjects	Questioner on line with 9 subjects	80%
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard For 10: 1pt ex officio - attendance at the laboratory 9PT 9 medium-level subjects	Questioner on line with 9 subjects	20%
10.6 Final exam note:	Nfe =0,8 Nse +0,2 Nla , Nla 5		

10.7 Minimum performance standard:

Course:- knowing the construction parts and the principle of operation of different electrical equipment.

- the ability to identify a particular type of electrical circuit
- participating in at least half of the courses.

Academic seminar: - ability to solve the electromagnetic problems.

Laboratory: - ability to conceive and read an electrical scheme

- ability to carry out an electrical installation;
- participation in all laboratory work.

E110, tel.:+40 259 408 458, masilaghi@uoradea.ro, hhtp://masilaghi.webhost.uoradea.ro

1. Data related to the study program

Duta Telatea to the Staay program				
1.1 Higher education institution	UNIVERSITY OF ORADEA			
1.2 Faculty	Faculty of Electrical Engineering and Information Technology			
1.3 Department	Department of Control Systems Engineering and Management			
1.4 Field of study	Control systems engineering			
1.5 Study cycle	Bachelor (1 st cycle)			
1.6 Study program/Qualification	Automatics and Applied Informatics/ Bachelor in engineering			

2. Data related to the subject

2.1 Name of the subj	.1 Name of the subject			mmı	ınication			
2.2 Holder of the sub	Holder of the subject Lecturer Phd. eng. Sanda DALE							
2.3 Holder of the academic								
seminar/laboratory/project								
2.4 Year of study I	II	2.5 Semesto	er	4	2.6 Type of the	VP	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3. I otal estimated time (nours of didacti	c activ	rues per semester,	,		
3.1 Number of hours per week	1	of which: 3.2	1	3.3 academic	-/-/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	14	3.6 academic	-/-/-
		course		seminar/laboratory/project	
Distribution of time					11
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					1
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					5
Tutorials					
Examinations					4
Other activities.					

3.7 Total of hours for	11
individual study	
3.9 Total of hours per	25
semester	
3.10 Number of credits	1

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	
the academic	
seminary/laboratory/project	
6. Specific skills acquired	

Professional skills	C6. Apply knowledge of law, economics, marketing, business and quality assurance in the economic and managerial contexts
Transversal skills	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	■ The discipline has as an objectiv to support the students from Automatics and Applied
general	Informatics in getting familiar with the knowledge and abilities in professional
objective of	communication.
the subject	
7.2 Specific	■ The course has as a starting point the idea that professional communication abilities
objectives	must be permanently learned and improved. Hence, the main aim of the course is, for
	the students, to aquire the communication abilities that are necesary in the
	professional interactions, team working, projects and presentations. In every aspect, all
	kind of communication, including the technical ones, are considered.

8. Contents*

8. Contents**		
8.1 Course	Teaching methods	No. of hours/ Obs.
Chapter I: The object of proffesional communication		
1.1. The aim of the course. Definitions.		2h
1.2. Communication decaloque		
Chapter II . Bussiness communication		
2.1. Defining business communication		2h
2.2. Roles and rules in business communication		
2.3. Features and functions in business communication	Eroo ovnosuro	
Chapter III. Active listening. The role of feedback in communication	Free exposure, course presentation on video projector,	2h
Listening and active listening.	on the board or	
Factors determining the succes or failure in communication	online	
Chapter IV. Oral communication. The meeting. Communication		2h
techniques in organizations		211
Chapter V. Oral communication. Interview as communication		2h
form in organizations		211
Chapter VI. Written communication		
6.1. Business letters		41
6.2. Booklets		4h
6.3. Reports		
6.4. Online communication		
Bibliography		
1. Abrudan Simona Veronica - Fundamentele comunic rii economice, Editura		
2.Bentea Violeta, Abrudan Simona Veronica - Comunicare profesional , (No Inginerilor de Petrol i Gaze", Bucure ti, 2008	ote de curs), Editura Asocia	a iei, Societatea
8.2 Academic seminar/laboratory/project	Teaching methods	No. of
	-	hours/
		Observations

Bibliography

1.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of this discipline can be find in the curriculum of other academic centers accredited for such specialization (Universitatea Tehnic din Cluj-Napoca, Universitatea din Craiova, Universitatea "Politehnica"din Timi oara, Universitatea Gh. Asachi Ia i, etc). Knowing the communication issues in proffesional background is a stringent requirement of the employers in the domain (Comau, Faist Mekatronics, Celestica, GMAB etc).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		Evaluation can be made	final mark
		face-to-face and online	
10.4 Course	Minimum required	Oral presentation	100%
	conditions for passing	The students make	
	the exam (mark 5): in	presentations on chosen	
	accordance with the	subjects, in teams	
	minimum performance	formed by 3-4 people	
	standard, without		
	presenting details		
	- For 10: throughout		
	knowledge of all		
	subjects		
10.5 Academic seminar			
10.6 Laboratory			
10.7 Project			
10014:	. 1 1		

10.8 Minimum performance standard:

Course: Finding the proper solution on designating tasks, through individual and team work, with qualified assistance, having in mind the ethical professional norms. Responsible assuming of specific tasks in multispecialized teams and efficient communication at institutional level.

Academic seminar:

Laboratory:

Project:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject		Computer Architecture					
2.2 Holder of the su	ıbjec	t	Prof.dr.habil.eng. Daniela Elena Popescu				
2.3 Holder of the academic			lect.dr.ing. Mircea-Petru Ursu				
seminar/laboratory/project							
2.4 Year of study		2.5 Semeste	er	2.6 Type of the		2.7 Subject regime	8)
III		5		evaluation	Ex		DD

3. Total estimated time (hours of didactic activities per semester)

3. I otal estimated time (nours of didacti	c activ	rues per semester	,		
3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	2/1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	70	Of which: 3.5	28	3.6 academic	28/
		course		seminar/laboratory/project	14
Distribution of time					hou
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					28
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					28
Tutorials					10
Examinations					4
Other activities.					

3.7 Total of hours for	98
individual study	
3.9 Total of hours per	168
semester	
3.10 Number of credits	6

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- The course can be held face to face or online "
the course	- attendance at least 50% of the courses
5.2.for the development of	- The seminar / laboratory / project can be held face to face or online
the academic	- Mandatory presence at all laboratories;
seminary/laboratory/project	- Students must have completed the theoretical part of the paper;
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	ific skills acquired
	CP3. Problem solving using Computer Science and engineering tools
Professional skills	CP5. Design, life cycle management, integration and integrity of hardware, software and communications systems
Transversal skills	CT1. Applying, in the context of compliance with the law, intellectual property rights (including technology transfer), product certification methodology, principles, norms and values of the code of professional ethics within its own rigorous, efficient and responsible work strategy CT2. Identify roles and responsibilities in a multi-specialized team decision-making and assigning tasks, with the application of relationship techniques and efficient work within the team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives	s of the discipline (resulting from the grid of the specific competences acquired)			
7.1 The	 The discipline aims to familiarize students with specialization with as much 			
general	knowledge: theoretical and practical, related to the structure and operation of computer			
objective of	systems, so that students are able to understand the operation of modern systems, and			
the subject	the parallelism in their implementation.			
7.2 Specific	Course:			
objectives	 Understanding arithmetic and logic operations. Classification of summation 			
	structures according to the mode of transport propagation			
	 Understanding Input, output, connection topologies. 			
	 General information about computer networks, Network topologies, network 			
	standards, and network protocols			
	 Parallel computer architectures, Parallelism in systems with a central unit, 			
	Parallelism in systems with several central units, Classification of architectures,			
	 Understanding Parallelism in time (pipeline), Parallelism in Space (Processor 			
	Areas), Vector processing,			
	 Architectures based on the concept of data flow, Systolic architectures 			
	Laboratory & Project:			
	 Fixing the architecture, exterior interface signals, and instruction set for the 			
	processor project theme. Realization of the data processing unit at the level of			
	the processor to be designed, Following the execution phase of the instruction			
	for each instruction, Elaboration of the flowchart of the instruction cycle for the			
	whole., Implementation of the control unit and the block of control circuits,, The			
	project provides the necessary knowledge to the students in order to be able to			
	design a minimum calculation system starting from some given specifications.			

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
Chapter 1. Central units and arithmetic-logic units,	• Free course presentation	4
wired control and microprogrammed control.	with video projector /	
Particularities of information representation in	overhead projector and	
computing systems. How to perform arithmetic and	blackboard in an	
logic operations. Classification of summation	interactive way: punctuate	
structures according to the mode of transport	from time to time questions	
propagation	for students in order to	
	increase the degree of	
Chapter 2. Input, output, connection topologies. Bus	interactivity	4
communications. Protocols. Arbitrations. Methods of	 Indication of topics for 	
communication with IO devices (Inputs-Outputs,	documentation and	
Interrupts, DMA)	individual study	
Chapter 3. General information about computer		4
networks, Network topologies and standards, HDLC		

protocol. ISO model of OSI architecture. ARPA Internet. Network topologies, standards and protocols	
Chapter 4 Parallel computer architectures, Parallelism in systems with a central unit, Parallelism in systems with several central units, Classification of architectures	2
Chapter 5 Parallelism in time - The concept of pipeline, The organization of memory in structures with pipeline, Central units using pipeline. Arithmetic units with pipeline, Problems of these structures, Computers with BA	4
Chapter 6 Parallelism in Space - Processor Areas (PA). Characterization of PA, Types of Organizations, Associative PAs, Static and Dynamic Interconnection Networks, Problems Considered in PA Design, Multiple Processor Areas, Computers with PAs	2
Chapter 7 Vector processing, The typical structure of a vector computer, The concept of vector processing and assembly tape. Examples of vector processors.	2
Chapter 8 Architectures based on the concept of data flow., Graphical representation of programs, General structure of a system with data flow, Types of architectures with data flow, Static data structures and dynamic data structures, Disadvantages of the concept of data flow. data flow	2
Chapter 9 Systolic architectures, Characteristics of systolic architectures, Types of systolic structures, Tolerance to failures in systolic structures, Computers with systolic architecture. Algorithms / structures ratio	2

- Course notes (slides) made available to students in electronic format on the Office 365 platform, https://uoradeamy.sharepoint.com/personal/daniela_popescu_didactic_uoradea_ro/Documents/Forms/All.aspx
- William Stalings, Computer Organization and Architecture, 9th Edition, March 11, 2012 | ISBN-10: 013293633X | ISBN-13: 978-0132936330, Computer Science Series
- Course notes Architecture systems architecture, D.E.Popescu, posted on the Office platform for CTI students
- Popescu Daniela E .. Architecture and organization of conventional computer systems ,, University of Oradea Publishing House, Oradea, 2002, ISBN 973-613-225-0, 2002
- D.E.Popescu, C.Popescu, Architecture of computer systems, University Publishing House, laboratory supervisor, ISBN 973-613-225-9, 2002
- Popescu Daniela E., Introduction to the architecture of computer systems, MATRIX ROM publishing house Bucharest, ISBN 973 - 685-067 -6
- K.Hwang, F.A. Briggs Computer Architecture and Parallel processing, Treira Publishing House, Mc Graw
 Hill Book company 1987
- Mircea Popa, Introductions in parallel and unconventional architectures, AS Computer Press Publishing House Timi oara 1992

8.2 Academic laboratory	Teaching methods	No. of hours/ Observations
1. Presentation of the laboratory, of the labor	Students receive (via the	2
protection norms and of the problems specific to the	Internet) the laboratory	
field of computer systems - generalities regarding the	papers at least one week in	
architecture of computer systems.	advance and study them.	
	Then, the students carry	
2. A computing system based on the NIOS II	out the practical part of the	2
processor.	work under the guidance of	
3. Input / output ports (part one).	the teacher.	2
4. Input / output ports (part two).	The tools used are:	2
5. Interrogation.	ALTERA Quartus II Web	2
6. Interruption.	Edition - integrated	2
7. Assessment of knowledge. Test 1.	environment for the	2
8. Multiprocessor systems.	development and	2
9. Using the audio port.	simulation of digital	2
10. Using the video port (part one).	circuits	2
11. Using the video port (part one).	ALTERA DE1 -	2
12. Audio-video application.	Configurable test board,	2
13. Assessment of knowledge. Test 2.	designed for teaching purposes (FPGA	2
14. Laboratory recoveries. Ending the situation.	programming)	2

Bibliography

- Course notes (slides) made available to students in electronic format on the Office 365 platform, https://uoradeamy.sharepoint.com/personal/daniela_popescu_didactic_uoradea_ro/Documents/Forms/All.aspx
- 2. D.E.Popescu, C.Popescu, Architecture of computer systems, University Publishing House, laboratory supervisor, ISBN 973-613-225-9, 2002
- 3. Office 365 platform on which the laboratory works are loaded
- 4. Laboratory guide Computer systems architecture, Daniel Filipa
- 5. Architecture and organization of conventional computing systems laboratory works guide, revised edition,, University of Oradea Publishing House, ISBN: 978-606-10-0678-6

8.3 Academic project	Teaching methods	No. of hours/ Observations
1. Design of a microprogrammed system based on the		
NIOS II processor, starting from some given		
specifications.		
Design steps:	Students receive the design	
1. Presentation of project themes. Each student	theme and design	
receives a homework assignment.	methodology and complete	2 hours are allocated for each
2 6. Realization of the system using the	the project stages under the	of the 7 detailed points of the
components of Quartus II Web Edition, writing	guidance of the teacher.	laboratory activity.
programs to run on this system and fulfilling the	The tools used are:	
requirements of the project theme, testing the system	ALTERA Quartus II Web	
/ programs with the Altera DE1 board, questions and	Edition - integrated	
answers related to the problems encountered,	environment for the	
preparation of project documentation.	development and	
7. Project support, practical verification of operation	simulation of digital	
and grading.	circuits	
	ALTERA DE1 -	
	Configurable test board,	
	designed for teaching	
	purposes (FPGA	
	programming).	

- 1. ALTERA Quartus II Web Edition
- 2. Annexes of the laboratory supervisor Daniel Filipa Laboratory supervisor Computer systems architecture, Daniel Filipa
- 3. Architecture and organization of conventional computing systems laboratory works guide, revised edition,, University of Oradea Publishing House, ISBN: 978-606-10-0678-6

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is found in the curriculum of Computer and Information Technology specializations and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.), and knowledge of the architecture and organization of computer systems as well as their operation and design is a stringent requirement of employers in the field (Rds & Rcs, Plexus, Neologic, Celestica, Keysys, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5) in accordance with the minimum performance standard: - it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: - for grade 10, a thorough knowledge of all is required	The evaluation can be done face to face or online depending on the situation imposed	70%
10.6 Laboratory	 for mark 5 it is necessary to solve the corresponding number of requirements, depending on the test scale. for mark 10, all requirements on the test sheet must be correctly resolved. 	Tests during the semester The evaluation of students is done through two tests, taken during the semester. The arithmetic mean of the marks of these tests represents the mark with which they enter the exam. Students can also get extra points, depending on their participation in the laboratory and solving exercises with a higher degree of difficulty. These points can be used to calculate the test score.	30%
10.7 Project	- for mark 6, going through the design stages, without going into the design details for mark 10, going through all the design stages, with the completion of the	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade, separate from the exam.	100%

elaboration of the project	
theme.	

10.8 Minimum performance standard:

Assimilation of detailed knowledge about the construction, operation and design of central processing units for digital computers, as well as about the organization of different types of memories associated with them.

The studied design methods are exemplified on existing architectures, including the study of special architectures. A VHDL processor for the FPGA will be designed.

The term solution, in individual activities and activities carried out in groups, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Development of team spirit, spirit of mutual help, awareness of the importance of training during the semester for good and sustainable results, awareness of the importance of research, own research related to learning (library, internet), cultivating a discipline of work, done correctly and on time

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

			r					
2.1 Name of the subject				oder	n Languages – Engl	ish (3	3)	
2.2 Holder of the subject				cture	er PhD. Abrudan Cac	iora s	imona Veronica	
2.3 Holder of the a	caden	nic						
laboratory/project								
2.4 Year of study	II	2.5 Semest	er	3	2.6 Type of the	PE	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2	3.3 academic seminar	1
		course	/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	3.6 academic seminar/	14
		course	laboratory/project	
Distribution of time				
Study using the manual, course support, bibliography and handwritten notes				
Supplementary documentation using the library, on field-related electronic platforms and in				
field-related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				15
Tutorials				3
Examinations				2
Other activities.				

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5.1. for the development of	
the course	
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the academic	- The seminar can be carried out face to face or online
laboratory/project	
6. Specific skills acquired	

Professional skills	
Transversal skills	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

to understand and produce accurate academic and scientific texts in English, an understand written or verbal texts on topics related to the field of engineering in general and the specialization they have chosen, in particular. During the seminar, students are given the opportunity to produce written texts or to express themselves verbally, in English. In order to achieve these goals, the textbooks elaborated by the foreign languages team of the Department of Automated	7.1 The	The seminar aims to be, for the students who do not have English as main					
general and the specialization they have chosen, in particular. During the seminar, students are given the opportunity to produce written texts or to express themselves verbally, in English. In order to achieve these goals, the textbooks elaborated by the foreign languages team of the Department of Automated	objective of	school, in order to reach the level of language competence that would alow them to understand and produce accurate academic and scientific texts in English, and					
		general and the specialization they have chosen, in particular. During the seminar, students are given the opportunity to produce written texts or to express					
Systems Engineering and Management are used, as well as specialized books							
		Systems Engineering and Management are used, as well as specialized books, published by well-known international publishing houses.					
	*	Acquiring field-related vocabulary in English and the completion of					

8. Contents*

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Electric Light Sources. Incandescent lamps. Halogen Lamps. Vocabulary exercises and discussion.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 2. Gerunds and Participles. Revision. Vocabulary and conversation exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3 : Low-pressure and High-pressure Discharge Lamps. Revision and application exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Infinitives (Revision). Chapter 5. Electric Power Distribution Systems. The Electric	Free exposure, with the presentation of the course with video projector, on the board or online Free exposure,	1h
Circuit. Induction Heating (Writing and rephrasing exercises)	with the presentation of the course with video projector, on the board or online	1 h
Chapter 6: Computer Games Today. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Changing the Structure of Information in a Sentence: the Passive Voice.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: Electric Machines: Electric Motors, Electric Generators. Transformers. Reading, Speaking.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: Review of Conditional Sentences.	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Distribution Boards. (Listening and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: The Subjunctive Mood. (Revision and exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 12: Considerations on Electric Power Conversion (Reading and conversation exrcises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: DC to DC Conversion. AC to DC Conversion. (Revision and exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: The distribution of electricity. Lectura de text si exercitii de vocabular.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universit ții "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, English for Computer Science Students, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Ben ea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, *English for ICT Studies in Higher Education Studies*, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Seminar	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the	Written exam Students rare required to solve exercises, meant at testing the knwledge they acquired during the semester	100 %

subjects, without	
presenting details on	
them	
For 10: thorough	
knowledge of all subjects	
is required	

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Modern Languages – English (4)					
2.2 Holder of the si	ubject	-	Lecturer PhD. Abrudan Caciora simona Veronica					
2.3 Holder of the a	.3 Holder of the academic							
laboratory/project								
2.4 Year of study	II	2.5 Semest	er	4	2.6 Type of the	PE	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2	3.3 academic seminar	1
_		course	/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	3.6 academic seminar/	14
		course	laboratory/project	
Distribution of time				
Study using the manual, course support, bibliography and handwritten notes				15
Supplementary documentation using the library, on field-related electronic platforms and in				15
field-related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				15
Tutorials				3
Examinations				2
Other activities.				

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

	· ····································
4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5.1. for the development of	
the course	
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the academic	- The seminar can be carried out face to face or online
laboratory/project	
6. Specific skills acquired	

Professional skills	
rsal	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	The seminar aims to be, for the students who do not have English as main							
general	subject, a means of improving the English knowledge they had acquired in high							
objective of	school, in order to reach the level of language competence that would alow them							
the subject	to understand and produce accurate academic and scientific texts in English, and							
	understand written or verbal texts on topics related to the field of engineering in							
	general and the specialization they have chosen, in particular. During the							
	seminar, students are given the opportunity to produce written texts or to express							
	themselves verbally, in English. In order to achieve these goals, the textbooks							
	elaborated by the foreign languages team of the Department of Automated							
	Systems Engineering and Management are used, as well as specialized books,							
	published by well-known international publishing houses.							
7.2 Specific	Acquiring field-related vocabulary in English and the completion of							
objectives	documents that are specific to the chosen field of study							

8. Contents*

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Computer Modeling and Software Used in Electrical Engineering. Vocabulary exercises and discussion.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 2. Computational electromagnetics (electromagnetic modeling): FDTD, FEM, BEM. Vocabulary and conversation exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3: Programming Languages. Listening exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Simulation Software. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 5. AutoCAD. (Reading and writing exercises. Writing a report)	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 6: COMSOL Multiphysics. Reading a d vocabuary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Mathcad. Speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: MATLAB. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: Professional ethics. (Discussing aspects relating to the idea of ethics in the engineering domain. Vocabulary related to ethics, rights, laws, etc)	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Finding a Job in the field of Electrical Engineering. (Vocabulary relating to persuasion techniques).	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: Listening: Hisotry of Electrical Engineering.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 12: Speaking: Job interview. (Speaking, role-play and presentation of arguments)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: Writing Leaflets Promoting Education in Electrical Engineering. (Writing and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: Revision of concepts discussed throughout the semester. (Vocabulary exercises).	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universit ții "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, English for Computer Science Students, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Ben ea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, *English for ICT Studies in Higher Education Studies*, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Seminar	Minimum required	Written exam	100 %
	conditions for passing	Students rare required to	
	the exam (mark 5): in	solve exercises, meant at	
	accordance with the	testing the knwledge	
	minimum performance	they acquired during the	
	standard it is necessary	semester	
	to know the fundamental		
	notions required in the		

subjects, without	
presenting details on	
them	
For 10: thorough	
knowledge of all subjects	
is required	

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	
	AUTOMATIC SYSTEMS ENGINEERING AND MANAGEMENT
1.4 Field of study	
·	AUTOMATIC SYSTEMS ENGINEERING AND MANAGEMENT
1.5 Study cycle	
	Bachelor (1 st cycle)
1.6 Study program/Qualification	AUTOMATION AND APPLIED COMPUTING /Engineer

2. Data related to the subject

= Duta Pelatea to the sa	J							
2.1 Name of the subject	;	_	MEASUREMENTS AND TRANSLATORS					
2.2 Holder of the subject	et	_	ef. Luc	r ri. c	lr. ing. Marius CODREAN			
2.3 Holder of the acader seminar/laboratory/proj			ef. Luc	er ri. c	lr. ing. Marius CODREAN			
2.4 Year of study	II	2.5 Semest	er	3	2.6 Type of the evaluation	EX	2.7 Subject regime	I
					evaluation			

Imposed; (O) Optional; (F) Facultative

3. Total estimated time (hours of didactic activities per semester)

		,			
3.1 Number of hours per week		of which:: 3.2 course	2	3.3 academic laboratory	1
3.4 Total of hours from the curriculum 42		of which: 3.5 course	28	3.6 academic laboratory	14
Distribution of time		•			36 hours
Study using the manual, course support, bibliography and handwritten notes			10 hours		
Supplementary documentation using the library, on field-related electronic platforms and in field- related places			8 hours		
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			10 hours		
Tutorials			-		
Examinations			8 hours		
Other activities			-		

3.7 Total of hours for individual study	36
3.9 Total of hours per semester	78
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 Related to the	(Conditions)
curriculum	
4.2 Related to skills	-

5. Condi ii (acolo unde este cazul)

5.1. For the development of the	video projector presentation
course	
5.2. For the development of the	The existence of the apparatus and equipment necessary for the development in optimal
academic	conditions of the works provided in the discipline file.
seminary/laboratory/project	Providing students with the laboratory guide in printed or electronic format.

6. Specific skills a	cquired
Professional skills	C1. Use of knowledge of mathematics, physics, measurement technology, technical graphics, mechanical, chemical, electrical and electronic engineering in systems engineering. C3. Using the fundamentals of automation, methods of modeling, simulation, identification and analysis of processes, computer aided design techniques.
Transversal skills	Not the case.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general	The course is taught to second year <i>Computers</i> students. The course addresses notions that will allow
- C	future graduates to have a rich background on the use of techniques for measuring electrical and non-

objective of the subject	electrical quantities and data acquisition systems in electromechanical systems.
7.2 Specific objectives	 Identification, selection of terminology, concepts and methods in the technical and technological design of processes in the electrical and electronics industry Use of basic knowledge to explain and interpret problems that occur in the technical and technological design of electrical and electronic processes in compliance with quality conditions. Application of basic principles and methods for technical and technological design specific to electrical and electronic processes in conditions of qualified assistance. Elaboration of technical and technological projects related to the processes of activities in the field of Computers and Information Technology, by using established methods and principles Adequate use of criteria and standard methods for identifying, evaluating and modeling processes by applying computer programs, including graphical applications, specific to the field of Computers and Information Technology Elaboration of professional projects specific to some activities in the field of Computers and Information Technology, based on the selection and use of some principles, methods and IT applications

8. Contents*

o. Contents		
8.1 Course	Teaching methods	No. of hours/ Observations
Chapter I INTRODUCTION	Interactive lecture:	2 hours
1.1. The object of the science of measurement	exposure;	2 110 0115
1.2. Classification of measurable quantities	video projector presentation	
1.3. The legal system of units of measurement		
1.4. Standards		
	Internative lastures	2 hours
Chapter III MEASUREMENT ERRORS	Interactive lecture;	2 Hours
2.1. Classification of measurement errors	exposure; video projector presentation	
2.2. Estimation of random errors	video projector presentation	
2.3. Estimation of systematic errors		
2.4. Estimation of total errors for indirect measurement methods		
2.5. Processing and presentation of measurement results		
2.6. Informational interpretation of measurement errors	T. C. L.	2.1
Chapter III ELECTRICAL METHODS AND MEASURES.	Interactive lecture;	2 hours
METROLOGICAL CHARACTERISTICS	exposure;	
3.1. The measurement process	video projector presentation	
3.2. Classification of electrical measurement methods		
3.3. Hierarchy of electrical measurement methods		
3.4. Definition of electrical measuring instruments		
3.5. Functional diagrams of electrical measuring instruments		
3.6. Metrological characteristics of electrical measuring instruments		
Chapter IV MEASURING MEANS IN DYNAMIC REGIME	Interactive lecture;	2 hours
4.1. Overview	exposure;	
4.2. Typical behaviors of measuring instruments	video projector presentation	
Chapter V ANALOGUE MEASURING MEASURES	Interactive lecture;	2 hours
5.1. Principles of operation of electromechanical instruments	exposure;	
5.2. Constructive elements of electromechanical instruments	video projector	
	presentation	
Chapter VI. DIGITAL MEASURERS	Interactive lecture;	2 hours
6.1. Working principle and characteristics of digital devices	exposure;	
6.2. Components of digital devices	video projector presentation	
Chapter VII MEASUREMENT OF ELECTRIC CURRENT AND	Interactive lecture;	2 hours
VOLTAGE	exposure;	2 Hours
	video projector presentation	
7.1. Current measurement.	video projector presentation	
7.2. Methods and means of measuring electrical voltage.		2.1
Chapter. VIII MEASUREMENT OF RESISTANCE AND IMPEDANCE	Interactive lecture;	2 hours
8.1. Overview	exposure;	
8.2. Measurement of resistances using simple ohmmeters	video projector presentation	
8.3. Measurement of resistances with bridge methods		
8.4. Resistance - voltage converters		
8.5. Measurement of circuit parameters R, L, C using a.c. bridges.		
Chapter IX ELECTRICAL POWER MEASUREMENT	Interactive lecture;	2 hours
9.1. Introduction.	exposure;	
9.2. Power measurement in c. c. and c.a. single phase with electrodynamic	video projector presentation	
wattmeter.		
9.3. Active power measurement in polyphase circuits.		
9.4. Reactive power measurement.		
Chapter XI MEASUREMENT OF ELECTRICAL ENERGY	Interactive lecture;	2 hours
10.1. Generalities.	exposure;	
10.2. Electronic meters for measuring energy.	video projector presentation	
Chapter XI ARCHITECTURE OF ANALOG DATA ACQUISITION AND	Interactive lecture;	2 hours
GENERATION SYSTEMS [1]	exposure;	2 110015
	спрозите,	

11.1. Generalities.	video projector presentation	
11.2. Data acquisition systems (DAS).		
11.3. Data generation systems (DGS).		
11.4. Interface techniques.		
Chapter XII. ELECTRIC TRANSDUCERS	Interactive lecture;	6 hours
12.1. General considerations;	exposure;	
12.2. Resistive transducers;	video projector presentation	
12.3. Capacitive transducers;		
12.4. Inductive transducers;		
12.5. Induction transducers;		
12.6. Thermoelectric transducers;		
12.7. Galvanomagnetic transducers;		
12.8. Photoelectric transducers;		
12.9. Piezoelectric transducers.		

Bibliography

- 1. Gordan M., M sur ri electrice în electrotehnic , Ed. Universit ii din Oradea, 2003.
- 2. Gordan M., M sur ri electrice i sisteme de m surare, Ed. Universit ii din Oradea, 2001.
- 3. Gordan M. M sur ri electrice i electronice, Ed. Universit ii din Oradea, 1999.
- 4. Gordan M. M sur ri electrice i electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de m sur i control, Ed. Universit ii din Oradea, 2003.
- 6. Gordan M. M sur ri electrice i electronice Curs format electronic POSDRU DIDATEC 2013, p.291;
- 7. Vaibhavi A. Sonetha, Electrical and Electronic Measurement, 2019
- 6. Ignea, A, Stoiciu, D., M sur ri electronice, senzori si traductoare, Editura Politehnica, Timisoara, 2007
- 7. Pawan Chandani, Electrical Measurements and Instrumentation, 2017.
- 8. E. Nicolau i colectiv Manualul inginerului electronist, E.T. Bucure ti 1980.
- 9. Tânovan I. G., Metrologie electric i instrumenta ie, Ed. Mediamira Cluj Napoca 2003.
- 10. Ciocârlea-Vasilescu, A., M. Constantin, Neagu I., Tehnici de m surare în domeniu, Bucure ti, Ed. CD PRESS 2007.
- 11. C. Mich-Vancea, I.M. Gordan Traductoare, interfe e i Achizi ii de date, Note de curs, Ed. Universit ii din Oradea 2010.
- 12. tef nescu C., Cupcea N., Sisteme inteligente de m surare i control, Ed. Albastr Cluj-Napoca 2002.
- 12. Gordan M. i colab. M sur ri electrice în electrotehnic Îndrum tor de laborator, Ed. Universit ii din Oradea, 2003.
- 13. Gordan M., Tom e M., M sur ri în energetic Îndrum tor de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tom e M., M sur ri electrice i electronice Îndrum tor de laborator, Lito Univ. din Oradea, 1997.

8.2 Academic seminar	Teaching methods	No. of hours/
		Observations
8.3 Academic laboratory		
1. Presentation of the content and requirements required for the proper	Practical application.	2 hours
conduct of laboratory work. Estimation of measurement errors and	Discussions	
interpretation of results.		
2. Measurement of resistances by volt - ammeter method. Measuring	Practical application.	2 hours
resistances with simple direct current bridge.	Discussions	
3. Checking the cathode ray oscilloscope. Real-time oscilloscope	Practical application.	2 hours
measurements.	Discussions	
4. Power measurement in c.c. circuits. Measurement of active and reactive	Practical application.	2 hours
power in three-phase circuits.	Discussions	
5. Introduction to the LabView interface program.	Practical application.	2 hours
	Discussions	
6. Realization of a simple virtual instrument device.	Practical application.	2 hours
	Discussions	
7. Recovery of laboratories. Ending the school situation.	Practical application.	2 hours
	Discussions	
8.4 Academic project		

- 1. Gordan M., M sur ri electrice în electrotehnic, Ed. Universit ii din Oradea, 2003.
- 2. Gordan M., M sur ri electrice i sisteme de m surare, Ed. Universit ii din Oradea, 2001.
- 3. Gordan M. M sur ri electrice i electronice, Ed. Universit ii din Oradea, 1999.
- 4. Gordan M. M sur ri electrice i electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de m sur i control, Ed. Universit ii din Oradea, 2003.
- 6. Iliescu C., Ionescu-Golovanov C., i al ii M sur ri electrice i electronice, E.D.P. Bucure ti 1983.
- 7. G. Ionescu M sur ri i traductoare, E.D.P. Bucure ti 1985.
- 6. Kishore K. Lal, Electronic Measurement and Instrumentation, PEI, 2009.
- 7. F. Auty, J. Williams, R. Stubins Beginner's Guide to Measurement in Electronic and Electrical Engineering. NPL, 2014.
- 8. E. Nicolau i colectiv Manualul inginerului electronist, E.T. Bucure ti 1980.
- 9. Tânovan I. G., Metrologie electric i instrumenta ie, Ed. Mediamira Cluj Napoca 2003.
- 10. Tiron M.- Teoria erorilor de m surare i metoda celor mai mici p trate. E.T. Bucure ti 1972.

- 11. Pop E., Stoica V., Naforni a I., Petriu E., Tehnici moderne de m surare, Ed. Facla Timi oara 1983.
- 12. tef nescu C., Cupcea N., Sisteme inteligente de m surare i control, Ed. Albastr Cluj-Napoca 2002.
- 12. Gordan M. i colab. M sur ri electrice în electrotehnic Îndrum tor de laborator, Ed. Universit ii din Oradea, 2003.
- 13. Gordan M., Tom e M., M sur ri în energetic Îndrum tor de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tom e M., M sur ri electrice i electronice Îndrum tor de laborator, Lito Univ. din Oradea, 1997.
- 15. D. Belege, G. Gasparesc M sur ri electrice i electronice. Aplicații practice, Ed. Politehnica Timi oara, 2019.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

Introduction in the courses and laboratory works of some subjects of interest for the profile economic environment in the industrial area of the city.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final
10.4 Course	Active participation in developed discussions. Documented arguments. Providing relevant solutions to the issues under debate. Knowledge of the basics on all topics covered.	Oral, online or written assessment Discussions. Argue.	70 %
10.5 Academic seminar	-	-	-
10.6 Laboratory	Written test marked with a minimum of 5. Practical realization of all the requirements imposed by the laboratory work. Well- documented arguments. Reading the required bibliography.	Written test. Practical test. Online test. Discussions. Argue.	30%
10.7 Project	-	-	-

^{10.8} Minimum performance standard:

obtaining a grade of 5 in each laboratory test; participation and fulfillment of all requirements imposed by each laboratory work; obtaining a grade of 5 in the course tests, as an arithmetic mean of the grades obtained in this type of activity. Knowledge of the basics on all the topics taught.

1. Data related to the study program

1. But Teluted to the study progra	•••
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics/ Bachelor in engineering

2. Data related to the subject

2.1 Name of the subject			Sys	tems	Theory I			
2.2 Holder of the subject			Lec	cture	r Phd. eng. Sanda DA	LE		
2.3 Holder of the academic			Leo	cture	r Phd. eng. Sanda DA	LE		
seminar/laboratory/project								
2.4 Year of study	II	2.5 Semeste	er	3	2.6 Type of the	Ex	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week		of which: 3.2	2	3.3 academic	2/-/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28/-/-
		course		seminar/laboratory/project	
Distribution of time					69 h
Study using the manual, course support, bibliography and handwritten notes			30		
Supplementary documentation using the library, on field-related electronic platforms and in field-			10		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			15		
Tutorials					
Examinations			4		
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of algebra, mathematical analysis, special math, physics, electronics,
curriculum	computer programming, MATLAB-SIMULINK
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Attendance at least 50% of the seminars
the academic	- Minimum 5 grade at every test completed during the semester
seminary/laboratory/project	- The seminar can be held face to face or online
6. Specific skills acquired	

Professional skills	 C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering. C3. Using automation fundamentals, methods of modeling, simulation, identification and processes analysis, computer aided design techniques.
Transversal skills	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	or the discipline (resulting from the grid or the specific competences acquired)
7.1 The	■ The students should get familiar with the basic knowledge on control system theory,
general	accompanied by applications and examples
objective of	
the subject	
7.2 Specific	■ The course presents theoretical elements on mathematical modelling, transfer
objectives	functions, system connections, block-schemes algebra, system sampling issues.
	• The seminar helps the students to get familiar with the practical aspects related to the
	theoretical notions presented at the course, by solving specific applications.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Obs.
Chapter I: Basic notions on systems 1.1. Terminology 1.2. Control systems structures 1.3. Mathematical models for systems 1.4. Linear system concept. Non-linear systems 1.5. How to determine MM for systems Chapter II . Calcullus elements for linear systems 2.1. Linearization on tangent 2.2. Transfer matrix and functions 2.3. Standard transfer elements 2.4. Systems with time delay 2.5. Mathematical modelling for system interconnections. Block-scheme algebra 2.6. Sampling continuous-time systems. Issues. Methods 2.7. Models for sampled-time systems	Free exposure, course presentation on video projector, on the board or online	8h 18h
Review of the course		2h

- 1. S. Dale, Teoria sistemelor, noti e de curs.
- 2. T.L. Dragomir, Teoria sistemelor, vol. I i II, Editura Politehnica, Timi oara, 2004.
- 3. L.A. Zadeh, E. Polak, Teoria sistemelor
- **4. V. Ionescu**, *Teoria* sistemelor Sisteme liniare.
- 5. V. Ionescu, L. Lupa, Tehnici de calcul în teoria sistemelor Sisteme liniare.
- 6. V. Budi an, Teoria sistemelor. Vol. 1 i 2

8.2 Academic seminar	Teaching methods	No. of hours/
		Obs.

1. Examples for system theory applications in various domains 2. Mathematical modeling of electrical systems I 3. Mathematical modeling of mechanical systems II 4. Mathematical modeling of mechanical systems 5. Examples for mathematical modeling of discrete-events systems 6. Simulation schemes for state-space models 7. Mathematical modeling for system interconnections (tindomain) 8. Mathematical modeling for system interconnections (block-scheme algebra) 9. Sampling the MM for continuous-time systems. RIST models in state-space 10. Sampling the MM for continuous-time systems. RIST models in state-space for systems with time-delay. 11. Sampling the MM for continuous-time systems. RIST models in input-output space. Pulse transfer function. 12. Sampling the MM for continuous-time systems. RIST models in input-output space. Pulse transfer function for systems with time-delay. 13. Sampling the MM for continuous-time systems.	2h 2
systems with time-delay.	2h
, · · · · · · · · · · · · · · · · · · ·	21
Approximation methods 14. Review of the seminar. Final test.	2h

Bibliografie

- 1. S. Dale, Teoria sistemelor, noti e de curs.
- 2. T.L. Dragomir, Teoria sistemelor, vol. I i II, Editura Politehnica, Timi oara, 2004.
- 3. L.A. Zadeh, E. Polak, Teoria sistemelor
- **4. V. Ionescu**, *Teoria sistemelor Sisteme liniare*.
- 5. V. Ionescu, L. Lupa, Tehnici de calcul în teoria sistemelor Sisteme liniare.
- **6.** V. Budi an, Teoria sistemelor. Vol. 1 i 2

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

- The content of this discipline can be find in the curriculum of other academic centers accredited for Automatics and Applied Informatics (Universitatea Tehnic din Cluj-Napoca, Universitatea din Craiova, Universitatea "Politehnica"din Timi oara, Universitatea Politehnica din Bucure ti, etc).
- Knowing the principles and the methods of control system analysis and their application is a stringent requirement of the employers in the domain which are have also concerns on control systems desig (Continental, Comau, Nidec, Celestica, Plexus etc).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		Evaluation can be made	final mark
		face-to-face and online	
10.4 Course	Minimum required	Written and oral	70%
	conditions for passing	presentation	
	the exam (mark 5): in	The students have to	
	accordance with the	solve theoretical and	
	minimum performance	applicative subjects.	
	standard, without	The evaluation can be	
	presenting details	made face to face or	
	For 10: throughout	online	
	knowledge of all subject		
10.5 Academic seminar	Minimum required	Written and oral	30%
	conditions for entering	testing	
	the exam (mark 5): in	The students have to	

	accordance with the	complete 4 tests during	
	minimum performance	the semester, which they	
	standard, without	will present at the end	
	presenting details	Evaluarea se poate face	
	For 10: throughout	fa în fa sau on-line.	
	knowledge of all subject		
10.6 Laboratory			
10.7 Project			

10.8 Minimum performance standard:

Course

- to acquire basic theoretical notions on systems theory
- to acquire the ability to determine the mathematical models for a system and to operate with them when is necessary (from transformations between models to modeling complex system interconnections)
- to operate with specific signal sampling and reconstruction methods in order to obtain various mathematical models or in different situations

Academic seminar:

- to acquire the ability to use in concrete applications the mathematical models for systems and to operate with them when the case (from transformations between models to modeling complex system interconnections)
- to operate with specific signal sampling and reconstruction methods in order to obtain various mathematical models or in different situations described by concrete applications

 Laboratory:

Project:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics/ Bachelor in engineering

2. Data related to the subject

2.1 Name of the subject			Sys	tems	s Theory II			
2.2 Holder of the subject			Lec	ture	er Phd. eng. Sanda DA	LE		
2.3 Holder of the academic		Lec	ture	er Phd. eng. Sanda DA	LE			
seminar/laboratory/project								
2.4 Year of study	II	2.5 Semeste	er	4	2.6 Type of the	Ex	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	5	of which: 3.2 course	2	3.3 academic seminar/lab/project	2/1/-
3.4 Total of hours from the curriculum	70	Of which: 3.5	28	3.6 academic	28/14/-
		course		seminar/lab/project	
Distribution of time					30 h
Study using the manual, course support, bibliography and handwritten notes 10				10	
Supplementary documentation using the library, on field-related electronic platforms and in 6					6
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays 8					8
Tutorials					
Examinations 4					4
Other activities.					

3.7 Total of hours for	30
individual study	
3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of algebra, mathematical analysis, special math, physics, electronics,
curriculum	computer programming, MATLAB-SIMULINK, System theory I
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Attendance at least 50% of the seminars
the academic	- Minimum 5 grade at every seminar test completed during the semester
seminary/laboratory/project	- Attendance at least 6 from 7 labs; only 1 lab can be recovered
	- Every lab must be read before the completion
	- The seminar and the lab can be held face to face or online
6. Specific skills acquired	

Professional skills	 C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering. C3. Using automation fundamentals, methods of modeling, simulation, identification and processes analysis, computer aided design techniques.
Transversal skills	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	• The students should get familiar with the basic knowledge on control system theory,
general	accompanied by applications, simulations and examples
objective of	
the subject	
7.2 Specific	The course presents theoretical elements on time response, frequency response, system
objectives	properties analysis and system quality
	• The seminar helps the students to get familiar with the practical aspects related to the
	theoretical notions presented at the course, by solving specific applications.
	• The laboratory helps the students to get familiar with modeling and simulation issues
	for control system theory using MATLAB-SIMULINK

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Obs.
Chapter III: Time-response and frequency response for linear systems. 3.1. Operating regimes 3.2. Time response calculus for linear systems 3.3. Frequency response for linear systems 3.4. Bode plots 3.5. Transfer plots (Nyquist)		12h
Chapter IV. Control systems 4.1. System property analysis. Properties. 4.2. Stability. Definitions. Analysis: methods and criteria 4.3. Controlability. Definitions. Analysis: methods 4.4. Observability. Definitions. Analysis: methods 4.5. Control system structures 4.6. Quality indicators	Free exposure, course presentation on video projector, on the board or online	14h
Review of the course		2h

- 1. S. Dale, Teoria sistemelor, noti e de curs.
- 2. T.L. Dragomir, Teoria sistemelor, vol. I i II, Editura Politehnica, Timi oara, 2004.
- 3. L.A. Zadeh, E. Polak, Teoria sistemelor
- **4. V. Ionescu**, Teoria sistemelor Sisteme liniare.
- 5. V. Ionescu, L. Lupa, Tehnici de calcul în teoria sistemelor Sisteme liniare.
- 6. V. Budi an, Teoria sistemelor. Vol. 1 i 2

		_
8.2 Academic seminar	Teaching methods	No. of hours/
		Obs.

1. Time-response calculus for first order systems		2h
2. Time-response calculus for first order systems to step input		2h
3. Time-response calculus for first order systems to ramp input and Dirac pulse input		2h
4. Time-response calculus for first order systems to real step input		2h
5. Time-response calculus for first order systems to unit area pulse		2h
6. Time-response calculus for second order systems	Solving specific applications.	2h
7. Frequency response for linear systems. Bode plots.	Discussions and debates based	2h
8. Transfer plot (Nyquist II)	on them.	2h
9. Transfer plot (Nyquits) II		2h
10. Stability analysis through fundamental stability		
theorem		2h
11. Stability analysis through algebraic and frequency		
criteria		2h
12. Stability analysis through root locus method		2h
13. Controlability and observability analysis. Kalman		
criteria.		2h
14. Review of the seminar. Final test.		2h
8.3. Laboratory	Teaching methods	No. of hours/
·	<u> </u>	Obs.
L1. Physical systems modeling		2h
L2. Sampling methods for MM of continuous-time		
systems		2h
L3. Time-response calculus for linear systems	The students have to study the	2h
L4. Frequency response calculus for linear systems	lab and complete the practical	2h
L5. Stability analysis I. Stability criteria.	part guided by the teacher	2h
L6. Stability analysis II. Stability methods.		2h
L7. Controlability and observability analysis		2h
Pibliografia		<i>2</i> 11

Bibliografie

- 1. S. Dale, M. Negr u, Îndrum tor de laborator de Teoria Sistemelor, 102 pag.
- 2. M. Negr u, Complet ri la Îndrum torul de laborator de Teoria Sistemelor, 170 pag. + programe

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

- The content of this discipline can be find in the curriculum of other academic centers accredited for Automatics and Applied Informatics (Universitatea Tehnic din Cluj-Napoca, Universitatea din Craiova, Universitatea "Politehnica"din Timi oara, Universitatea Politehnica din Bucure ti, etc).
- Knowing the principles and the methods of control system analysis and their application is a stringent requirement of the employers in the domain which are have also concerns on control systems desig (Continental, Comau, Nidec, Celestica, Plexus etc).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		Evaluation can be made	final mark
		face-to-face and online	
10.4 Course	Minimum required	Written and oral	60%
	conditions for passing	presentation	
	the exam (mark 5): in	The students have to	
	accordance with the	solve theoretical and	
	minimum performance	applicative subjects.	
	standard, without	The evaluation can be	
	presenting details	made face to face or	
	For 10: throughout	online	
	knowledge of all subject		

10.5 Academic seminar	Minimum required	Written and oral	25%
	conditions for entering	testing	
	the exam (mark 5): in	The students have to	
	accordance with the	complete 4 tests during	
	minimum performance	the semester, which they	
	standard, without	will present at the end	
	presenting details	The evaluation can be	
	For 10: throughout	made face to face or	
	knowledge of all subject	online	
10.6 Laboratory	Minimum required	Practical application	15%
	conditions for entering	For each lab, the students	
	the exam (mark 5): in	get a mark based on	
	accordance with the	theoretical and practical	
	minimum performance	knowledge and for the	
	standard, without	completion of the	
	presenting details	presentation. The final	
	For 10: throughout	mark represents the	
	knowledge of all subject	average of these marks	
10.7 Project			

10.8 Minimum performance standard:

Course:

- to acquire basic theoretical notions on systems theory
- to acquire the ability to determine the mathematical models for a system and to operate with them when is necessary (from transformations between models to modeling complex system interconnections)
- to operate with specific signal sampling and reconstruction methods in order to obtain various mathematical models or in different situations

Academic seminar:

- to acquire the ability to use in concrete applications the mathematical models for systems and to operate with them when the case (from transformations between models to modeling complex system interconnections)
- to operate with specific signal sampling and reconstruction methods in order to obtain various mathematical models or in different situations described by concrete applications

 Laboratory:
- to acquire the capacity to realize a practical simulation
- to acquire the ability to interpret the simulation results
- to participate to all labs

Project:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of
	Engineering

2. Data related to the subject

2.1 Name of the subject			Co	mpı	uter aided design in	autor	nation	
2.2 Holder of the subject			As	soc.	Prof. PhD eng. Dra	go C	ristian Spoial	
2.3 Holder of the academic			As	soc.	Prof. PhD eng. Dra	go C	ristian Spoial	
laboratory/project								
2.4 Year of II 2.5 Semes		er	2	2.6 Type of the	VP	2.7 Subject regime	DS	
study				evaluation				

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	1/1
		course		laboratory/proje	
				ct	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	14/14
		course		laboratory/proje	
				ct	
Distribution of time					44
Study using the manual, course support, bibliography and handwritten notes					14
Supplementary documentation using the library, on field-related electronic platforms and					10
in field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14
Tutorials				2	
Examinations					4
Other activities.					

3.7 Total of hours for individual	44
study	
3.9 Total of hours per semester	10
_	0
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Knowledges of computer using, technical drawing, numerical methods,
curriculum	informatics
4.2 related to skills	

5.1. for the development	- Attendance at least 50% of the courses

of the course	- The course can be held face to face or online
5.2.for the development	- Mandatory presence at all laboratories;
of the academic	- The laboratory/project can be carried out face to face or online;
laboratory/project	- Cadence Orcad 9.2 and Matlab softwares installed on the computers in
	the laboratory classroom;
	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline
6. Specific skills acquired	

Professional skills

Transversal skills

C3. Using the automation basis, the modelling, simulation, identification and analysis of processes, the technics of computer-aided design.

TC1. Application, in the context of the laws respect, of the rights for intelectual property (including technological transfer), of the methodology of products certification, of the principles, norms and values of the professional ethics code in the own strategy for rigorous, efficient and responsible work.

TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working

TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	• The discipline has as objective the selection and the evaluation, as a user, of							
general	the dedicated software and different tools for computer-aided design (CAD), for							
objective of	applications in the field of systems engineering, computers, information and							
the subject	communications technology.							
7.2 Specific	• Using the integrated hardware-software design (co-design) and the							
objectives	programming engineering as development methodologies, including the							
3	modelling at the system level.							

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. General presentation of the OrCAD 9 package software 1.1.OrCAD Capture 1.2.OrCAD PSPICE 1.3.OrCAD Layout	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
2. Electric schemes drawing 2.1. Electric schemes drawing with OrCAD Capture 2.2. Electric schemes processing	Free exposure, with the presentation of the course with video projector, on the board or online	6 h

3. Simulation of electric schemes working with OrCAD PSPICE 3.1.OrCAD PSPICE software 3.2.Setting of wave forms display in Capture 3.3.Verification of working electric schemes using OrCAD PSPICE	Free exposure, with the presentation of the course with video projector, on the board or online	8 h
4. Design of PCB (Printed Circuit Board) with OrCAD LAYOUT	Free exposure, with the presentation of the course with video projector, on the board or online	6 h
5. General presentation of MATLAB software package	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
6. Graphical interface in MATLAB	Free exposure, with the presentation of the course with video projector, on the board or online	4 h
Total		28 h

- 1. D. Spoiala, Proiectarea asistat în automatizari, electronic format course for students, 2016
- **2.** D.Pitic , C.Gheorghe, M.D bâcan, **Proiectarea plachetelor electronice**, Ed. Albastr , Cluj-Napoca, 1996
- 3. A.Câmpeanu, I.Jive, Orcad III, Ed.Teora, Bucure ti, 1995
- **4.** xxx, **OrCAD9**. Manual de utilizare, 2000
- **5.** M.Ghinea, V.Fire eanu, **MATLAB. Calcul numeric. Grafic . Aplica ii**, Ed. Teora, Bucure ti, 1995
- **6.** xxx, **The Student Edition of MATLAB version 6 User's Guide**, The MATH WORKS inc., Pretince Hall, New Jersey, 1995
- 7. D.M. Etter, Engineering Problem Solving with MATLAB, Pretince Hall, New Jersey, 1993
- **8.** M.Postolache, **Metode numerice**, Ed.Sirius, Bucure ti, 1994

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Introductive concepts regarding the software package Cadence OrCAD 9.2. Schemes realization in OrCAD Capture. Schemes and sub-schemes in OrCAD Capture. Working simulation of the electric schemes. Simulation examples. The transfer from OrCAD Capture block in OrCAD Layout. PCB design in OrCAD Layout block. PCB routing in OrCAD Layout block. Recoveries and closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a random test during the laboratory. The students carry out the practical part of the work under the guidance of the teacher	2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
Total		14 h
Bibliography		

2. Drago Cristian Spoial, Eugen Ioan Gergely, **Proiectarea asistat în automatiz ri**, îndrum tor de laborator, Ed. Universit ii din Oradea, 2009, ISBN 978-973-759-767-0, 128 pag..

8.3.Academic project	Teaching	No. of hours/
	methods	Observations
1. Project theme presentation.	Students receive	2 h
2. Drawing the electric scheme of a single-processor system.	the themes for	2 h
3. Creating memory libraries with typified components.	the project and carry out the	2 h
4. Scheme processing.	practical part of	2 h
5. Generating output reports and components list.	the work under	2 h
6. Printing the project.	the guidance of	2 h
7. Presentation of the project.	the teacher	2 h
Total		14 h

Bibliography

1.D. Spoial, **Proiectarea asistat** în automatiz ri, electronic format course for students, 2016 2.xxx, **OrCAD9**, Using manual, 2000

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Automatics and Applied Informatics study program from other university centers that have accredited this specialization (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Bucharest, Gh. Asachi University of Iasi, etc.). The knowledges of computer-aided design in automation are important for the graduated students in their employment in the field of automation.

10. Evaluation

Type of activity	10.1 Evaluation	10.2 Evaluation	10.3 Percent from the
	criteria	methods	final mark
		The evaluation can be	
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written verification	
	conditions for passing	during the semester	
	the exam (grade 5): in	There are 2 verifications	
	accordance with the	during the semester. The	
	minimum performance	subjects are divided in 2	
	standard it is necessary	parts. For each of them	
	to know the fundamental	the verification consists	
	notions required in the	of a quiz with questions	50 %
	subjects, without	of theory and	30 %
	presenting details on	applications from all the	
	them	courses. The final grade	
	For 10: thorough	is calculated as the mean	
	knowledge of all subjects	of the 2 grades obtained	
	is required	from the both	
		verifications.	
10.5 Laboratory	Minimum required	Practical application	
	conditions for promotion	Each student receives a	
	(grade 5): in accordance	grade for laboratory	
	with the minimum	work during the semester	
	performance standard	and for the laboratory	
	students have to carry	work file. This results in	25%
	out the laboratory works,	an average for the	
	without presenting	laboratory.	

	1 . 11 .1		
	details on them		
	For 10: complete		
	performing of all		
	laboratory works		
10.6.Project	Minimum required	Oral presentation	
	conditions for promotion	After the project	
	(grade 6): in accordance	presentation and the	
	with the minimum	work evaluation during	
	performance standard,	the semester, each	
	browsing all the	student receives a grade.	
	designing steps, without		
	the deepening of the		
	computations		25%
	For 10 grade: browsing		
	all the designing steps,		
	finalizing all the		
	computations and the		
	electric schemes		

10.7. Minimum performance standard:

Course: usage of the concepts and instruments from the computer science and information technology field, in order to solve specific problems for system engineering; participation at least of half of courses. **Laboratory:** completion of the content of all laboratory works; participation to all the laboratory works. **Project:** completion of the content of all project works; participation to all the project works.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	ıbject		Computer networks					
2.2 Holder of the subject			Assoc. Prof. PhD eng. Drago Cristian Spoial					
2.3 Holder of the academic			Assoc. Prof. PhD eng. Drago Cristian Spoial					
laboratory								
2.4 Year of study	III	2.5 Semest	er	6	2.6 Type of the	Ex	2.7 Subject regime	O/DD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	2/0
		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28/0
		course		laboratory/project	
Distribution of time					48
Study using the manual, course support, bibliography and handwritten notes					20
Supplementary documentation using the library, on field-related electronic platforms and in					8
field-related places					
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ po	rtfolio	s and essays	14
Tutorials					2
Examinations					6
Other activities.					

3.7 Total of hours for	48
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Khowledge of computer using, informatics, operating systems
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic laboratory	- The laboratory/project can be carried out face to face or online
	- The computer network from the laboratory must be functional, being
	installed the software Packet Tracer
	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of

	the discipline
6. Spec	ific skills acquired
skills	C3. Using fundamentals of automatics, of modelling, simulation, identification and analysis methods for processes, of computer-aided design techniques.
Professional	C4. Design, implementation, test, use and mentenance of the systems with equipments for general use and dedicated, including computer networks, for automation applications and applied informatics.
Transversal skills	 TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	1 (0 0 1 1 1 /
7.1 The	Reasoned using of the concepts of informatics and computer technology for
general	solving well-defined problems in systems engineering field and in applications
objective of	based on hardware and software using, in industrial systems or informatic
the subject	systems.
7.2 Specific	• Using the integrated hardware-software design (co-design) and the
objectives	programming engineering as development methodologies, including the
	modelling at the system level.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
 1. Introduction in networking. Classifications 1.1. Network types 1.2. Information transmission in the teleprocessing environments specific to automation field 	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 2. Network programms 2.1. Hierarchies of protocols 2.2. Services oriented on connections and services without connections 2.3. Service primitives 2.4. The relationship between services and protocols 	Free exposure, with the presentation of the course with video projector, on the board or online	2h
3. Reference models 3.1. OSI reference model 3.2. TCP/IP reference model 3.3. A comparison between OSI and TCP/IP reference models	Free exposure, with the presentation of the course with video projector, on the board or online	4h
4. Network examples 4.1. Internet 4.2. Networks connection-oriented 4.3. Ethernet 4.4. Wireless networks 802.11 4.5. Manual realization of the cabling	Free exposure, with the presentation of the course with video projector, on the board or online	4h

10.2. Presentation level 11. Application level 11.1. DNS - Domain Name Server 11.2. SNMP – A simple protocol simplu for network administration 11.3. Electronic mail 11.4. File Tranfer Protocol 11.5. World Wide Web 11.6. Administration of the data communication in the application level	with the presentation of the course with video projector, on the board or online Free exposure, with the presentation of the course with video projector, on the board or online Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h
10.2. Presentation level	presentation of the course with video projector, on the board or online Free exposure, with the presentation of the course with video projector, on the board or	
10. Session and presentation levels 10.1. General considerations	presentation of the course with video projector, on the board or	2h
9. Transport level 9.1. 4 level role 9.2. General format of the protocols of the transport level 9.3. Number of ports 9.4. Number of the sequence and the confirmation	Free exposure,	
8. Network level 8.1. Considerations 8.2. Optimal way identification and addressing 8.3. IP address and address classes 8.4. IP addressing in subnetworks 8.5. IP addresses assignment 8.6. Literally addressing	Free exposure, with the presentation of the course with video projector, on the board or online	4h
7. Data connection level 7.1. MAC functions 7.2. Framing and internet standard 7.2.1. Ethernet framework 7.2.2. Half-Duplex Ethernet (CSMA/CD Access Protocol) 7.2.3. Full-Duplex Ethernet 7.3. FDDI 7.4. Colision domain	Free exposure, with the presentation of the course with video projector, on the board or online	2h
6. Network infrastructure 6.1. Network card 6.2. Equipments for data transmission	Free exposure, with the presentation of the course with video projector, on the board or online	2h
5. Physical level 5.1. Magnetic environment 5.1.1. Copper environments 5.1.2. Optical fiber 5.1.3. Wireless environments 5.1.4. Phone system 5.2. Access control to the environment	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Drago -Cristian Spoiala, Silaghi Helga Maria Retele de calculatoare. Curs pentru uzul studentilor,
- 2.A.S. Tanenbaum, Re ele de calculatoare, edi ia a patra, Byblos 2004
- 3.V. Ariton, **Re ele de calculatoare**, Universitatea "Dun rea de Jos", 1998 Cisco Systems, CCNA 1 Cisco Certified Network Academy Program Network Basics
- 4.I. B nic , Re ele de comunica ii între calculatoare, Teora, 1998
- 5.G. Held, Comunica ii de date, Teora, 1998

6. A. Munteanu, V.G. Serban, Re ele locale de calculatoare – proiectare si administrare , Polirom, 2003						
7. L. Scripcariu, I.D. Scripcariu, Re ele de calculatoare , Tehnopress, 2006						
8. Zinca, D. – Re ele de calculatoare , Editura Risoprint, Cluj-Napoca, 2006						
8.2 Academic laboratory	Teaching	No. of hours/				
	methods	Observations				
1. Realization of the crossover cable.	Students receive	2 h				
2. Configuration of a network board in Windows 2000/XP.	laboratory papers	2 h				
3. Windows commands for the network configuration.	at least one week	2 h				
4. Subnetworks configuration and IP-s calculation.	in advance, study	2 h				
5. Packet Tracer application. General presentation.	them, inspect	2 h				
6. Packet Tracer application. Devices configuration.	them, and take a	2 h				
7. Routing protocols in Packet Tracer.	theoretical test at	2 h				
8.Configuration of the static and dynamic routes.	the beginning of the laboratory.	2 h				
9. Configuration of the routers with CLI interface. Introduction.	Then, the	2 h				
10. Configuration of the routers with CLI interface. Applications.	students carry out	2 h				
11. ACL-s configuration (Access List Control).	the practical part	2 h				
12. Networks interconnection with switches. VLAN networks.	of the work under	2 h				
13. Creating VLAN-s and links of trunk type, using 802.1Q	the guidance of	2 h				
protocol.	the teacher	2 h				
14. Closing the situation at the laboratory.						
TOTAL		28 h				
Dibliography						

6 A Muntagnu V.C. Sarban, Da ala lagala da galgulatagna, projectura si administrara, Polirom, 2002

Bibliography

1. Drago Cristian Spoial , Eugen Ioan Gergely , **Rețele de calculatoare**, Laboratory guide, Editura Universit ții din Oradea, 2010

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics of other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the working principle of the computer networks is very important in the field of automation.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written verification	60 %
	conditions for passing	during the semester	
	the exam (mark 5): in	There are 2 verifications	
	accordance with the	during the semester. The	
	minimum performance	subjects are divided in 2	
	standard it is necessary	parts. For each of them	
	to know the fundamental	the verification consists	
	notions required in the	of a quiz with questions	
	subjects, without	of theory and	
	presenting details on	applications from all the	
	them	courses. The final grade	
	For 10: thorough	is calculated as the mean	
	knowledge of all subjects	of the 2 grades obtained	
	is required	from the both	
		verifications.	
10.5 Laboratory	Minimum required	Practical application	40%
	conditions for promotion	Each student receives a	
	(grade 5): in accordance	grade for laboratory	
	with the minimum	work during the semester	
	performance standard	and for the laboratory	

students have to carry	work file. This results in	
out the laboratory works,	an average for the	
without presenting	laboratory.	
details on them		
For 10: complete		
performing of all		
laboratory works		

10.6 Minimum performance standard:

Course: usage of the concepts and instruments from the computer science and information technology field, in order to solve specific problems for system engineering; participation at least of half of courses.

Laboratory: completion of the content of all laboratory works; participation to all the laboratory works.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

1. Data related to the study program

in a distribution to the state, program	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject		Microprocessor systems I				
2.2 Holder of the subject		Assoc. Prof. PhD eng. Drago Cristian Spoial				
2.3 Holder of the academi	c	Lecturer PhD eng. Zoltan Kovendi				
laboratory						
2.4 Year of study III 2	2.5 Semester	ter 5 2.6 Type of the Ex 2.7 Subject regime O/I			O/DD	
			evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/0
		course		laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14/0
		course		laboratory/project	
Distribution of time					62
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in				12	
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				14	
Tutorials				2	
Examinations				6	
Other activities.					

3.7 Total of hours for individual study	62
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Khowledge of electrotechnics, electronics, electrical measurements, digital
curriculum	electronics
4.2 related to skills	

5. Conditions (where applicable	
5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic laboratory	- The laboratory can be carried out face to face or online
	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline
6. Specific skills acquired	

Professional skills	C5. Development of applications and implementation of algorithms and structures for automated control, using project management principles, programming environments and technologies based on microcontrollers, digital processors, programmable controllers, embedded systems.
Transversal skills	TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	Is the students familiarization with the main types of programmable integrated circuits used in the digital control equipments of the industrial machineries.
7.2 Specific objectives	 The course has the aim to present the theoretical elements of the programmable integrated circuits used in the digital control of the industrial processes. The laboratory familiarizes the students with practical aspects regarding the working principle of the systems with programmable integrated circuits from INTEL family, the programming modes used for these and the interconnection diagramms in order to obtain a control system.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
 Introduction The microprocessor and the programmable logic. The standard architecture of a microsystem. Microprocessors evolution. Microprocessors capsules. Microprocessors classification. Microprocessors applications. 	Free exposure, with the presentation of the course with video projector, on the board or online	2h
2. Information organization in microsystems 2.1. Data and instructions organization in memory. 2.2. Data internal representation. 2.3. Instruction format. 2.4. Addressing modes. 2.5. The stack. 2.6. Memory segmentation.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
 3. Central processing unit 3.1. The structure of a 8-bit microprocessor: Z80. 3.2. Microprocessor operating. 3.3. 8086 microprocessor architecture. 3.4. Microprocessor connections with the microsystem. 	Free exposure, with the presentation of the course with video projector, on the board or online	4h
 4. Main memory 4.1. Memory organization of a microsystem. 4.2. Main memory addressing. 4.3. The connection principle of the memory circuits in the microsystem. 4.4. Memory circuits types and their use in microsystem. 	Free exposure, with the presentation of the course with video projector, on the board or online	6h

 5. Input/output operations 5.1. The role and the classification of input/output operations. 5.2. The programmed transfer. 5.3. The transfer through the interruption. 5.4. Typified parallel interfaces. 5.5. Serial interfaces. 5.6. Direct memory access transfer. 5.7. Delay circuits. 	Free exposure, with the presentation of the course with video projector, on the board or online	12h
TOTAL		28h

- 1. t. Kakas, Sisteme cu microprocesoare (curs), Universitatea din Oradea, 1995,
- 2. I. Stojanov i col., De la poarta TTL la microprocesor (vol. 2), Ed. Tehnic , Bucure ti, 1987,
- 3. A.W. Triebel, A. Singh, Microprocesorul 8086, Ed. Mirton, Timi oara, 1990,
- **4.** M. Cornea-Hasegan, D. Cornea-Hasegan, *Proiectarea sistemelor cu microprocesor Z80*, Ed. Dacia, Cluj-Napoca, 1988.
- **5.** Spoial Drago Cristian, *Sisteme cu microprocesoare*, curs pentru uzul studenților în format electronic, 2020

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 The presentation of the laboratory, of the work safety norms and the presentation of the laboratory works. Arithmetic în computing systems. ISA x86 architecture. System with 32-bit microprocessor. Programm elaboration methodology. Programming and addressing methods. Assembly programming of the 32-bit microprocessors. Closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part of the work under the guidance of the teacher	1 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 1 h
TOTAL		14 h

Bibliography

- 1. Spoial Drago Cristian, Kövendi Zoltan, Sisteme cu microprocesoare, laboratory guide in electronic format, 2017
- 2. **** Technical book of the development system with 32 bits microprocessor.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics of other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the working principle of the microprocessors systems is very important in the field of automation.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or	10.3 Percent from the final mark
		online	
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary	Written exam The students get to solve 3 subjects with 3 levels of difficulty, of which scores summarize 10 mark.	60 %

	to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required		
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard students have to carry out the laboratory works, without presenting details on them For 10: complete performing of all laboratory works	Practical application Each student receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	40%

10.6 Minimum performance standard:

Course:

- Knowledge of the architecture and working principle of different types of microprocessors and microprocessors systems;
- The ability to identify a certain type of microprocessor system;
- The ability to design and programm the microprocessor systems;
- Participation at least of half of courses.

Laboratory:

- the ability to design a connection diagram with microsystem;
- the ability to realize a programm of application for a certain system;
- completion of the content of all laboratory works; participation to all the laboratory works.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

1. Data related to the study program

in a distribution to the study program	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject	Micro	Microprocessor systems II			
2.2 Holder of the subject	Assoc.	Assoc. Prof. PhD eng. Drago Cristian Spoial			
2.3 Holder of the academic	Lectur	Lecturer PhD eng. Zoltan Kovendi			
laboratory					
2.4 Year of study III 2.5 Semes	ter 6	2.6 Type of the	VP	2.7 Subject regime	O/DD
		evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/0
		course		laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14/0
		course		laboratory/project	
Distribution of time					62
Study using the manual, course support, bibliography and handwritten notes			28		
Supplementary documentation using the library, on field-related electronic platforms and in			12		
field-related places					
Preparing academic seminaries/laborator	ries/ th	nemes/ reports/ por	rtfolio	s and essays	14
Tutorials			2		
Examinations					6
Other activities.					

3.7 Total of hours for	62
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

	io upplionelo)
4.1 related to the	Khowledge of electrotechnics, electronics, electrical measurements, digital
curriculum	electronics
4.2 related to skills	

e. Conditions (where applicable	
5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic laboratory	- The laboratory can be carried out face to face or online
	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline
6. Specific skills acquired	

Professional skills	C5. Development of applications and implementation of algorithms and structures for automated control, using project management principles, programming environments and technologies based on microcontrollers, digital processors, programmable controllers, embedded systems.
Transversal skills	TC1. Application, in the context of the laws respect, of the rights for intelectual property (including technological transfer), of the methodology of products certification, of the principles, norms and values of the professional ethics code in the own strategy for rigorous, efficient and responsible work.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	of the discipline (resulting from the grid of the specific competences dequired)
7.1 The general objective of the subject	• Is the students familiarization with the main types of programmable integrated circuits used in the digital control equipments of the industrial machineries.
7.2 Specific objectives	 The course has the aim to present the theoretical elements of the programmable integrated circuits used in the digital control of the industrial processes. The laboratory familiarizes the students with practical aspects regarding the working principle of the systems with programmable integrated circuits from INTEL family, the programming modes used for these and the interconnection diagramms in order to obtain a control system.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
 Introduction Multiprocessor systems applications. Interconnection and communication methods. Interface blocks with the bus. 	Free exposure, with the presentation of the course with	2h
1.4. Addresses allocation.1.5. Bus saturation.	video projector, on the board or online	
2. Multiprocessor systems with templated buses 2.1. MULTIBUS bus. 2.2. VME bus.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
3. Modules design for multiprocessor systems 3.1. 8086 microprocessor in maximum mode. 3.2. Single board computer (SBC) with 8086. 3.3. SBC modules with double port memories. 3.4. Slave modules design.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
 4. Personal computers PC 4.1. Generalities. Block diagram. Processors generations. 4.2. Motherboard. 4.3. Main memory. 	Free exposure, with the presentation of the course with video projector, on the board or online	2h

5. PC computers buses 5.1. ISA bus. 5.2. EISA bus. 5.3. PCI bus.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
 6. Pentium processor 6.1. Internal architecture. 6.2. Working modes. 6.3. Segmentation. 6.4. Paging. 6.5. Protection mechanism. 6.6. Bus cycles. 6.7. PC main memory. 6.8. PC memory map. 6.9. Interrupting system. 6.10. PC DMA channels. 	Free exposure, with the presentation of the course with video projector, on the board or online	8h
7. Multiprocessor systems development7.1. Design steps for a microsystem.7.2. Methods used for microsystems design.	Free exposure, with the presentation of the course with video projector, on the board or online	6h
TOTAL		28h

- 1. t. Kakas, Sisteme cu microprocesoare (curs), Universitatea din Oradea, 1995,
- 2. I. Stojanov i col., De la poarta TTL la microprocesor (vol. 2), Ed. Tehnic , Bucure ti, 1987,
- 3. A.W. Triebel, A. Singh, Microprocesorul 8086, Ed. Mirton, Timi oara, 1990,
- **4.** M. Cornea-Hasegan, D. Cornea-Hasegan, *Proiectarea sistemelor cu microprocesor Z80*, Ed. Dacia, Cluj-Napoca, 1988.
- **5.** Spoial Drago Cristian, *Sisteme cu microprocesoare*, curs pentru uzul studenților în format electronic, 2020

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Monitor programm commands. Monitor programm resources. Keyboard and display. Analog-digital convertor. Digital-analog converter. Paralel interface. Serial interface. Closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part of the work under the guidance of the teacher	1 h 1 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h
TOTAL		14 h

Bibliography

- 1. Spoial Drago Cristian, Kövendi Zoltan, *Sisteme cu microprocesoare*, laboratory guide in electronic format, 2017
- 2. **** Technical book of the development system with 32 bits microprocessor.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics of other university centers that have accredited these specializations (Technical

University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the working principle of the microprocessors systems is very important in the field of automation.

10. Evaluation

hods 10.3 Percent from the
pe final mark
n 60 %
r
ions
The
in 2
em
sists
ions
l the
rade
nean
ined
on 40%
es a
nester
ry
ts in

10.6 Minimum performance standard:

Course:

- Knowledge of the architecture and working principle of different types of microprocessors and microprocessors systems;
- The ability to identify a certain type of microprocessor system;
- The ability to design and programm the microprocessor systems;
- Participation at least of half of courses.

Laboratory:

- the ability to design a connection diagram with microsystem;
- the ability to realize a programm of application for a certain system;
- completion of the content of all laboratory works; participation to all the laboratory works.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the	subje	ct	Pro	Programmable logic controllers and microprogramming				
2.2 Holder of the	subj	ect	Ass	Assoc. prof. GERGELY Eugen-Ioan				
2.3 Holder of the seminar/laborator			Asso	oc. prof. GEI	RGELY	Eugen-Ioan		
2.4 Year of	3	2.5	6	2.6 Type	of the	Examination	2.7 Subject	Field
study		Semester		evaluatio	n		regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

5. I otal estillated tille (nours or didaeti	e acti i	teres per semester	,		
3.1 Number of hours per week	5	of which: 3.2	2	3.3 academic	-/2/1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	70	Of which: 3.5	28	3.6 academic	-/28/14
		course		seminar/laboratory/project	
Distribution of time					34 hours
Study using the manual, course support,	biblio	graphy and handw	ritten	notes	14
Supplementary documentation using the	librar	y, on field-related	electro	onic platforms and in field-	7
related places					
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	tfolios	and essays	7
Tutorials					4
Examinations					2
Other activities.					

3.7 Total of hours for	34
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

11 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · · · · · · · · · · · · · · · · ·
4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- The laboratory/project facility has to be provided with the necessary
the academic	equipments
seminary/laboratory/project	- Students presence to all laboratory/project hours is compulsory
	- Students must have summarized the current laboratory work
	- Maximum 4 laboratory works (30%) can be recovered during the
	semester

- A participation below 70% at the laboratory works / project leads to the restoration of the subject - Each student will receive a project specification - Students have to accomodate with the rhythm of elaboration and writing of the project - Students have to provide and to defend their project - The laboratory / project hours can be carried out face to face or online 6. Specific skills acquired C5. Application development and implementation of algorithms and automatic management structures, using Professiona the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems l skills CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning **Fransversa**

tasks, applying techniques of effective relationships and team working CT3. Identify training opportunities and efficient use of resources and learning techniques for their own

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	■ The subject is a guide for using and design of PLC systems. During the course it will
general	be presented the PLC struture and functionning, based on examples from various PLC
objective of	manufacturers. The laboratory is based on the Texas Instruments TI305 PLC. During
the subject	the project hours the students will approach the control of various plants by using
	PLCs. Each student will receive an individual project specification.
7.2 Specific	■ To create the abilities for analyzing, design, implementation and troubleshooting of
objectives	PLC programs and systems
	 To acquire the necessary skills for programs design, PLC communication and
	programs execution monitoring
	 To provide the ability to identify and exploit the resources of a PLC

Q Contontak

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. The computing systems and the industrial control	face to face or	4 hours
	online	
	interactive	
	presentation	
2. The structure of the PLCs	face to face or	6 hours
	online	
	interactive	
	presentation	
3. Programming languages	face to face or	6 hours
	online	
	interactive	
	presentation	
4. Special functions	face to face or	6 hours
	online	
	interactive	
	presentation	
5. Programming techniques	face to face or	6 hours
	online	
	interactive	
	presentation	

- aplica ii, Editura Universit ii din Oradea, Oradea, ISBN 978-973-759-940-7, 2009.
- 2. J.A. Rehg and G.J. Sartori, Programmable Logic Controllers (2nd Edition), Prentice Hall, 2 edition, 2008.

8.2 Laboratory Teaching No. of hours/

	methods	Observations
. Labor protection. Presentation of laboratory works.	Laboratory work	2 hours
	summary and	
	practical demonstrations	
	using specific	
	equipments	
. General presentation of the PLC TI305. The handheld	Laboratory work	4 hours
•	summary and	1 Hours
rogrammer.	practical	
	demonstrations	
	using specific	
	equipments	
. The PLC instruction set	Laboratory work	4 hours
	summary and	
	practical	
	demonstrations	
	using specific	
B 1 11' 10' 11	equipments	2.1
Base racks and discrete I/O modules	Laboratory work	2 hours
	summary and	
	practical demonstrations	
	using specific	
	equipments	
. Timers and counters	Laboratory work	4 hours
. Timers and counters	summary and	4 Hours
	practical	
	demonstrations	
	using specific	
	equipments	
5. Analog input modules	Laboratory work	4 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	4.1
. Analog output modules	Laboratory work	4 hours
	summary and practical	
	demonstrations	
	using specific	
	equipments	
. PLC stage programming	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
. Completion of the laboratories situation	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	

2. Gavri M., Gergely E.I., Conducerea proceselor cu automate programabile, Editura Mediamira Cluj-Napoca, 2003.

8.3 Project	Teaching	No. of hours/
	methods	Observations
1. Presentation of the design specification. Presentation of the content	Interactive	2 hours
of the project.	presentation,	

	examples, individual work	
2. Identification of I/O signals.	Interactive presentation, examples,	2 hours
	individual work	
3. The selection of I/O modules. The selection of the base rack. The configuration of the PLC. Allocation of I/O and memory addresses.	Interactive presentation, examples, individual work	2 hours
4. Programming the PLC in Ladder Diagram and Instruction List	Interactive presentation, examples, individual work	4 hours
5. Program testing	Interactive presentation, examples, individual work	2 hours
6. Project delivering and defending	Interactive presentation, examples, individual work	2 hours

- 1. E.I. Gergely, Nagy Z.T., Spoial V., Automate programabile, Îndrum tor de proiect, Editura Universit ii din Oradea, Oradea, 2009.
- 2. F. Petruzella, Programmable Logic Controllers, Career Education, 3 edition, 2004.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be made face to face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard - For mark 10: - thorough knowledge regarding the architecture of the PLCs - thorough knowledge regarding the execution of PLC programs - thorough knowledge regarding the PLC programming languages - thorough knowledge regarding the PLC	Written examination	60%

	programming techniques		
10.6 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard - For 10: - thorough knowledge regarding the structure of the TI305 PLC - thorough knowledge regarding the operation and use of the TI305 PLC - thorough knowledge regarding the programming of the TI305 PLC -	Knowledge assessment test	20%
10.7 Project	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard - For 10: - thorough knowledge regarding the design of combinatorial and sequential circuits - thorough knowledge regarding the structure of the TI305 PLC - thorough knowledge regarding the identification and wiring of I/O signals - thorough knowledge regarding the operation and use of the TI305 PLC - thorough knowledge regarding the programming of the TI305 PLC and program testing	Project completion and defending	20%

program testing 10.8 Minimum performance standard:

Course:

- knowledges regarding the structure of the PLCs
- knowledges regarding the PLC program execution
- knowledges regarding the programming languages of the PLCs
- knowledges regarding the PLC programming techniques

Laboratory:

- knowledges regarding the structure of the TI305 PLC
- knowledges regarding the operation and use of the TI305 PLC
- knowledges regarding the programming of the TI305 PLC

Project:

- knowledges regarding the design of combinatorial and sequential circuits
- knowledges regarding the structure of the TI305 PLC
- knowledges regarding the identification and wiring of I/O signals
- knowledges regarding the operation and use of the TI305 PLC
- knowledges regarding the programming of the TI305 PLC and programs testing

1. Data about the program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty / Department	FACULTY OF ELECTRICAL ENGINEERING AND
	INFORMATION TECHNOLOGY
1.3 Department	DEPARTMENT OF ELECTRICAL ENGINEERING
1.4 Field of study	CONTROL SYSTEMS ENGINEERING
1.5 The study cycle	BACHELOR OF SCIENCE
1.6 Study program / Qualification	AUTOMATICS AND APPLIED INFORMATICS /
	BACHELOR OF ENGINEERING

2.Data related to the subject

2.1 The name of the subject			EL	ELECTRICAL SERVOSYSTEMS				
2.2 The holder of the subject			Pro	ofess	or PhD eng. Ton Da	ın George		
2.3 Holder of the academic seminar/laboratory/project			Pro	ofess	or PhD eng. Ton Da	n George		
2.4 Year of	III	2.5 Semest	ter 6		2.6 Type of	Colloquim	2.7 Subject regime	DS
study					evaluation			

3. Estimated total time

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 laboratory /project	1
3.4 Total hours in the curriculum	42	of which: 3.5	28	3.6 laboratory /project	14
		course			
Distribution of time fund hours					62
Study using the manual, course support,	bibliogra	phy and handwritte	n notes		20
Supplementary documentation using the	library, o	on field-related elect	tronic pl	atforms and in field-	20
related places					
Preparing academic seminaries/laborator	ries/ them	nes/ reports/ portfoli	os and e	ssays	14
Tutorial					2
Examinations					6
Other activities					

3.7 Total hours of individual	62
study	
3.9 Total of hours per semester	104
3.10 Number of credits	4

4. Pre - requisites (where applicable)

4.1 related to	Knowledge of electrical engineering, physics and mathematics
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- attendance at least 50% of the courses
the course	
5.2. for the development	- Mandatory attendance at all laboratory classes;
of the academic	- Students come with inspected laboratory work
seminary/laboratory/project	- A maximum of 2 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of the
	discipline

6. Specific skills acquired

competen e profesionale	 C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering. C4. Design, implementation, testing, use and maintenance of general-purpose systems and dedicated equipment, included computer networks for automation and applied informatics applications. C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems.
transversale	TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.

7. The objectives of the discipline

7. The objectives of the discipline	
7.1 The general objective of the	The purpose of the course is
subject	- Study of mechanical quantity adjustment systems for motion control.
	- The dynamic models of the electric d.c. servomotors are presented. and that.
	constructive, functional aspects
	- Control structures and design techniques for speed and position control
	systems.
7.2 Specific objectives	- Presentation of some calculation methods, in a unitary framework, which are
	necessary to solve the problems in classical or modern electrical engineering.
	- Greater emphasis was placed on practical applications, the course containing
	examples of calculation.
	- The seminar familiarizes students with theoretical aspects regarding the
	operation of servosystems

8. Content

8.1 Course	Teaching methods	Observations
1. Introductory notions. Notions of linear dynamic system. Modeling dynamic systems. Analysis of linear systems in the field of time. Systems connection. Characteristics of control systems. Automatic positioning system. Principle functional diagram of automatic positioning systems. Classification of automatic positioning systems.	Free presentation, with the presentation of the course on the overhead projector and on the board	4h/ weekly 1+ weekly 2
2. Structures and systems for regulation and process management. General considerations. Cascade control systems. Automatic control systems with reaction according to state variables. Disturbance compensation systems and combined control systems. Parallel automatic adjustment systems. Automatic adjustment systems with dead time compensation	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 3
3. Transducers used in positioning servosystems. Definition. Structure. Characteristics. Classification. Position transducers. Speed transducers. Acceleration transducers. Selsine.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 4

4. Regulators Generalities. Continuous regulators. Nonlinear regulators. Discrete regulators	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 5
5. Mechanical transmission Choice of mechanical transmission. Mechanical parameters of servosystems. Mechanical transmission identification.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 6
6. Analysis of automatic positioning systems Mathematical structure and model. The influence of the parameters of the component elements on the behavior of the servosystem. Special control problems of electric servosystems	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 7
7. Materials used in the construction of servomotors Magnetic materials. Conductive materials. Electrical insulating materials.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 8
8. Actuators of d.c. The mathematical model of the d.c. servomotor physical characteristics of dc servomotors.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 9
9. Stepper motors. Generalities. Classification of stepper motors. Variable reluctance stepper motors. Stepper motors with permanent magnets. Stepper motors with hybrids. Linear stepper motors. Characteristic sizes of stepper motors. Powering the motors step by step. Micropassage regime. Simplified mathematical models of stepper motors.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 10
10. Synchronous actuators with permanent magnets. Mathematical model of the synchronous servomotor with permanent magnets in dynamic mode. Adjusting the speed of the synchronous actuator with permanent magnets	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 11
11. Electronic control of SCC with permanent magnets Static DC power converters. PWM type converters. General structure, electrical diagram of the energy circuit. Dynamic models of static power converters (controlled rectifier, PWM converters)	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 12
12. Positioning systems with d.c. servosystems. Getting started. Experimental award criteria. Linear positioning systems. Nonlinear positioning systems. Incremental positioning systems	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 13
13. Analysis of electromechanical systems. The order continues. Discrete command. System model in state quantities. Discrete control of positioning systems. Controllability and observability.	Free presentation, with the presentation of the course on the overhead projector and on the board	2h/ weekly 14

- 1. Ton D. G., Servosisteme electrice note de curs.
- 2. Kuo B. C., Kelemen A., Sisteme de comand i reglare incremental a pozi iei. Ed. Tehnic , Bucure ti, 1981.
- 3. Trifa V. Servomecanisme curs litografiat, 1981.
- 4. Trifa V., Servomecanisme aplica ii litografiat, 1989.
- **5.** Vas S., Sensorless vector and direct torque control, Oxford, University Press, 1996.

8.2 Laboratory	Teaching methods	Observations
Automatic systems, Study of typical regulation laws Tuning of PID controllers, Status adjustment	Students receive laboratory papers at least one week in	2h/ weekly 1
3. Automatic adjustment systems used in servosystems - overview4. DC servomotor model	advance, study them, inspect them, and take a theoretical test at the beginning of the	2h/ weekly 3
5. DC voltage source model6. Analog current control system for MCC using PI regulators	laboratory.	2h/ weekly 5
7. Automatic adjustment systems used in servo systems. The d. c. servomotor model 8. Analog current control system for MCC using PI	The development of laboratory works is based on the interactive teacher-student partnership. Then,	2h / weekly 7
9. Analog speed control system. Saturation of analog regulators	the students carry out the practical part of the work under the guidance of the teacher.	2h / weekly 9
10. Digital current control system for MCC using PI regulators		2h / weekly 11
11. Digital speed control system for MCC using PI controllers12. Saturation of digital PI regulators	Free presentation on how to make the assemblies and check them after the students have made the	2h / weekly 13
13. Recoveries	assembly.	Total 14 h

- 1. Kuo B. C., Kelemen A., Sisteme de comand i reglare incremental a pozi iei. Ed. Tehnic , Bucure ti, 1981.
- 2. Trifa V. Servomecanisme curs litografiat, 1981.
- 3. Trifa V., Servomecanisme aplica ii litografiat, 1989.
- 4. Vas S., Sensorless vector and direct torque control, Oxford, University Press, 1996.

8.3. Project	Teaching methods	Remarks
Design stages		

9. Corroborating the contents of the discipline with the expectations of the representatives of the epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is found in the curriculum of Electrical Engineering and other university centers in Romania that have accredited these specializations, so knowledge of servosystems is a stringent requirement of employers in the field in the Oradea Industrial Park area.

10. Evaluation The evaluation can be done face to face or online

Activity type	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final
			mark
10.4 Course	The exam consists of checking knowledge by solving problems and a theory part in writing (1.5 hours)	The examination is written and oral.	40%

	The student at the exam must know		
	Knowledge for grade 5: - the fundamental aspects of the electric servosystems field - main characteristics of electric actuators		10%
	Knowledge for grade 6: - Representation of linear dynamic systems by transfer functions		10%
	Knowledge for grade 7: - knowledge of structures and systems for regulation and management of		10%
	processes		10%
	Knowledge for grade 8: - Granting PID regulators		
	Knowledge for grade 9: - Prediction adjustment, status adjustment		10%
	Knowledge for grade 10: - some aspects related to the design of automatic control systems, the use		10%
	of computer simulation programs		
10.5	Knowledge for grade 5:		40%
Laboratory	Knowledge of the development of the		
	work with the appropriate stages	Systematic and independent observation, experiment,	100/
	Knowledge for grade 6:	case study, computer-	10%
	Equipment needed to perform the work	assisted learning, study	
	Knowledge for grade 7:	methods using models	10%
	Correct reading of measurements		
	Knowledge for grade 8: Correct completion of the tables related to the paper		10%
	Wassaladaa faraasala O		10%
	Knowledge for grade 9: Correct drawing of the graphics specific to each work		10%
	Knowledge for grade 10:		
	Possibility to answer the questions at the end of the works		10%
10.6 Project			

10.7 Minimum performance standard

Course:

- Knowledge of the constructive parts and the principle of operation of the different servosystems.
- Ability to identify a certain type of electrical circuit
 - Participation in at least half of the courses

Laboratory:

- Ability to design and read a wiring diagram
- Ability to theoretically solve some requirements;
- Participation in all laboratory work.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the sul	bject		Dyr	Dynamic systems with discrete events				
2.2 Holder of the su	ubject	-	Lect. PhD eng. Coroiu Laura					
2.3 Holder of the ac	of the academic Lect. PhD eng. Diana Mesaros							
laboratory								
2.4 Year of study	III	2.5 Semeste	er	1I	2.6 Type of the	VP	2.7 Subject regime	О
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic laboratory	1
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academiclaboratory	14
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes				14	
Supplementary documentation using the library, on field-related electronic platforms and in field-			6		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			7		
Tutorials			2		
Examinations				4	
Other activities.					

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites(where applicable)

ii I I c I c quibiceb("inci	e application
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The laboratory can be carried out face to face or online
the academic	- The frequency at laboratory hours below 70% leads to the restoration of
seminary/laboratory/project	the discipline
6. Specific skills acquired	

Professional skills	C3. Using automation fundamentals, methods of modeling, simulation, identification and processes analysis, computer aided design techniques.
Transversal skills	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working. CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	1 6 6 1 1 1 /
7.1 The general objective of the subject	 The discipline aims to provide students with all the necessary basics, later in solving problems, the solutions being analytical and / or computer-assisted. A special contribution to the development of investigation skills is brought by a series of applications that compare and correlate the results of analytical solutions with those obtained by the computer. The Petri Net Toolbox environment was used for the computer-assisted approach to the solutions.
7.2 Specific objectives	 The course explores the theoretical and practical framework of discrete event systems using non-timed, timed and stochastic timing Petri nets, addressing the study of their behavioral and structural problems. The laboratory familiarizes students with practical aspects regarding the methods of implementation and study of the structural and behavioral characteristics of computer-assisted SED.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
	Free exposure,	-
1. Non-timed Petri nets	with the	6h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
2. Ordinary Petri nets and behavioral properties	with the	8h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
2 Charles of other atoms I managed in a	with the	0.4
3. Study of structural properties	presentation of	8h
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
4. Petri net models with deterministic timing	with the	6h
6	presentation of	OII
	the course with	
	video projector,	
	on the board or	
	online	
5. Petri net models with stochastic timing.	Free exposure,	
	with the	6h
	presentation of	OH
	the course with	

	video projector, on the board or online	
Bibliography 1. Coroiu Laura- course notes, 2020. 2. Octavian P str vanu Mihaela Matcovschi Cristian Mahulea, <i>Aplisistemelor cu evenimente discrete</i> , Editura Gh. Asachi 2002.	ica ii ale re elelor	petri în studierea
8.2 Academic Laboratory	Teaching methods	No. of hours/ Observations
 Labor protection norms. Introduction to Discrete Event Systems Applicability of discrete event systems. Transposing systems with discrete events into industrial / software processes Theoretical aspects and applicability of Petri Nets. Proposed exercises and problem. Theoretical aspects and applicability of Grafcet I. Proposed exercises and problem. Types of diagrams used in industrial / software processes I. Data 	Students receive the project theme and design methodology and under the guidance of the teacher perform the project stages	2h/laboratory every 2 weeks

- 1. Thomas and Angela Hathaway, Data Flow Diagrams Simply Put!: Process Modeling Techniques for Requirements Elicitation and Workflow Analysis, BA-Experts, 29 mar. 2015 75 pagini
- 2. https://app.diagrams.net/
- 3. https://www.atlassian.com/

flow diagrams, Sequential diagrams. UML diagrams.

7. Closing the situation at the laboratory

6. Types of diagrams used in industrial processes / software II

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Control Systems in Engineering from other university centers that have accredited similar specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Dynamic systems with discrete events is a stringent requirement of employers in the field (Comau, FaistMekatronics, Celestica, GMAB, etc.).

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent
		The evaluation can be done	from the final
		face-to-face or online	mark
10.4 Course	Minimum required	Writing examination	70 %
	conditions for passing the	Students receive for solving	
	exam (mark 5): in	each a form with 3 subjects of	
	accordance with the	theory and an application.	
	minimum performance		
	standard it is necessary to		
	know the fundamental		
	notions required in the		
	subjects, without presenting		
	details on them		
	For 10:thorough knowledge		
	of all subjects is required		
10.5 Laboratory	Minimum required	Oral presentation	30%
	conditions for promotion	Following the presentation at the	
	(grade 6): knowledge of the	laboratory completed during the	
	purpose of the paper, the	semester, each student receives a	
	content and requirements of	grade.	
	the experimental part;		
	For 10: detailed knowledge		
	of how to perform all		
	laboratory work.		

10.6 Minimum performance standard:

Course: - Ability to describe the operation of a Petri net related to a process;

Participation in at least half of the courses.
 Laboratory: - Ability to read and implement a Petri net diagram;
 - Participation in all laboratory works.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

		3,000						
2.1 Name of the subject			Ele	ectri	cal machines and di	rives	I	
2.2 Holder of the subject			Pro	Prof. PhD eng. Helga Silaghi				
2.3 Holder of the academic		Le	Lect. PhD eng. Viorica Spoial					
laboratory								
2.4 Year of study	III	2.5 Semest	er	5	2.6 Type of the	Ex	2.7 Subject regime	DD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in field-				10	
related places				-	
Preparing academic seminaries/laborator	ries/ th	nemes/ reports/ por	rtfolio	s and essays	22
Tutorials				10	
Examinations				4	
Other activities.					

3.7 Total of hours for	74
individual study	
3.9 Total of hours per	130
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

11	- · · · · · · · · · · · · · · · · · · ·
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory can be carried out face to face or online
seminary/laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	ific skills acquired
skills	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering
Professional	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems
Transversal skills	TC1. Application in the context of legislative compliance, intellectual property rights (including technology transfer), product certification methodology, principles, norms and values of professional ethics code in their own strategies for rigorous, efficient and accountable work TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	1 0 0 1 1 1 /
7.1 The	• The discipline has as objective the familiarization of the students from the
general	specialization Automation and applied informatics, with the field of electric
objective of	drives. Theoretical and practical knowledge on the technique of electric drives is
the subject	provided, as well as research, design and use of electric drive systems with direct
	current machines.
7.2 Specific	• The course aims to present the theoretical elements of the technique of electric
objectives	drives, electric drives with direct current electric machines
	• The laboratory familiarizes students with practical aspects of the operation of
	the electric drive system, the control methods of electrical actions with DC
	machines, including modern control methods with programmed logic and
	computer control.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1.1.Introduction in electrical drives 1.2.Structure and construction of electrical drive systems	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h
2.General problems of electrical drives technology2.1.The object of the kinematics and dynamics of electrical drives.	Free exposure, with the	4h
Motion equation 2.2.Reporting of couples, moments of inertia, strength and mass 2.3.Mechanical characteristics of electric machines and working mechanisms 2.4.Transmission of the movement from the electric machine to the	presentation of the course with video projector, on the board or online	2h 4h 2h
working mechanism. Electromagnetic couplings 2.5.Stability of electrical drives systems		2h
3.1.Electrical drives with DC machines 3.1.Electrical drives with DC machines 3.2. Drives with permanent magnets direct current machines 3.3.Reversible drives with DC machines	Free exposure, with the presentation of the course with video projector, on the board or online	6h 2h 2h

Bibliography

- 1. SILAGHI H., SPOIAL V., SILAGHI M. Ac ion ri electrice, Editura Mediamira, Oradea, 2009
 2. SILAGHI, H., SPOIAL, VIORICA, Ac ion ri electrice-probleme fundamentale i no iuni de proiectare, Ed. Universit ii din Oradea, 2002

- 3. SILAGHI H., SILAGHI M. Sisteme de ac ion ri electrice cu ma ini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIAL D., SPOIAL VIORICA, Ma ini electrice i sisteme de ac ion ri electrice, vol.II, Ed. Universit ii din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIAL , HELGA SILAGHI, Ac ion ri electrice speciale, Editura Universit ii din Oradea, 2010

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory, of the labor protection norms and of		2 h
the conventional signs specific to the field of electric drives.		
2. Introduction to the Matlab - Simulink simulation environment,	Students receive	2 h
with applications in electric drives	laboratory papers	
3. Use of the Simulink program to simulate drives with direct current	at least one week	2 h
and separate excitation machines	in advance, study	
4. Methods and schemes for starting the DC motors	them, inspect	4 h
5. The study of an electric drive system with DC motors powered by	them, and take a theoretical test at	4 h
PWM converter	the beginning of	
6. Simulation of the operation of a DC motor system powered by	the laboratory.	2 h
VTC, closed circuit	Then, the	
7. Study of an electric drive system with d.c. motor controlled with	students carry out	2 h
PLC	the practical part	
8. Methods and schemes for starting asynchronous motors	of the work under	4 h
9. Starting with resistors in the rotor circuit of asynchronous	the guidance of	2 h
machines with coiled rotor	the teacher.	
10. Changing the speed of drives with asynchronous machines by		2 h
changing the frequency of the supply voltage		
11. Closing the situation at the laboratory.		2 h

- 3. SILAGHI H., SPOIAL V., COSTEA C. Ac ion ri electrice, Îndrumar de laborator, Lito Universitatea din Oradea, 2008
- 4. Viorica Spoial , Helga Silaghi, Drago Spoial Ac ion ri electrice. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Edi ie CD-ROM, 140 pag, 2014

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	70 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10: thorough		
	knowledge of all subjects		

	is required		
10.5 Laboratory	Minimum required	Test + practical	30%
	conditions for promotion	application	
	(grade 5): in accordance	At each laboratory	
	with the minimum	students receive a test	
	performance standard	and a grade. Each	
	recognition of the stands	student also receives a	
	used to carry out the	grade for laboratory	
	laboratory works,	work during the semester	
	without presenting	and for the laboratory	
	details on them	work file. This results in	
	For 10: detailed	an average for the	
	knowledge of how to	laboratory.	
	perform all laboratory	_	
	work		

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

1. Data related to the study program

21 2 dtd 1 1 1 dt					
1.1 Higher education institution	UNIVERSITY OF ORADEA				
1.2 Faculty	Faculty of Electrical Engineering and Information Technology				
1.3 Department	Department of Control Systems Engineering and Management				
1.4 Field of study	Control systems engineering				
1.5 Study cycle	Bachelor (1st cycle)				
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering				

2. Data related to the subject

		· J · · ·						
2.1 Name of the subject			Ele	ectri	cal machines and dr	rives	II	
2.2 Holder of the subject			Pro	of. P	hD eng. Helga Silaghi			
2.3 Holder of the academic			Leo	ct. P	hD eng. Viorica Spoia	l / Le	ect. PhD eng. Claudiu Co	stea
laboratory/project								
2.4 Year of study	III	2.5 Semeste	er	6	2.6 Type of the	Ex	2.7 Subject regime	DD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3. I otal estimated time (nours of didacti	c activ	tites per semester	,	T	
3.1 Number of hours per week	5	of which: 3.2	2	3.3 academic	2/1
		course		laboratory/project	
3.4 Total of hours from the curriculum	70	Of which: 3.5	28	3.6 academic	28/14
		course		laboratory/project	
Distribution of time ho					hours
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in					5
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				20	
Tutorials					
Examinations					9
Other activities.					

3.7 Total of hours for			
individual study			
3.9 Total of hours per	130		
semester			
3.10 Number of credits	5		

4. Pre-requisites (where applicable)

"Te requisites (where applicable)						
4.1 related to the	(Conditions)					
curriculum						
4.2 related to skills						

` 11	,'
5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	rific skills acquired
skills	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering
Professional	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems
Fransversal skills	TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working
Trans	TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

· · · · · · · · · · · · · · · · · · ·	of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	• The discipline has as objective the familiarization of the students from the
general	specialization Automation and applied informatics, with the field of electric
objective of	drives. Theoretical and practical knowledge on the technique of electric drives is
the subject	provided, as well as research, design and use of electric drive systems with AC
	machines.
7.2 Specific	• The course aims to present the theoretical elements of the technique of electric
objectives	drives, electric drives with different AC machines
	• The laboratory familiarizes students with practical aspects of the operation of
	the electric drive system, the control methods of electrical actions with AC
	machines, including modern control methods with programmed logic and
	computer control.
	• The project provides the necessary knowledge to the students to be able to
	design an electric drive in the field of lifting and transport equipment.

8. Contents*

o. Contents"		
8.1 Course	Teaching	No. of hours/
	methods	Observations
1.Electrical drives with asynchronous machines	Free exposure,	2h
1.1.General relationships and mechanical features for electrical drives	with the	211
with asynchronous machines	presentation of	41
1.2.Methods of starting for electrical drives with asynchronous	the course with	4h
machines	video projector,	
1.3.Braking methods for electrical drives with asynchronous	on the board or	2h
machines	online	
1.4.Speed control for electrical drives with asynchronous machines		4h
•	Free exposure,	
2. Asynchronous machines control systems with variable	with the	
frequency supply	presentation of	2h
2.1.Mathematical model of the induction machine	the course with	2h
2.2.Induction machine simulation using LabVIEW	video projector,	2h
2.3. Vector control systems for induction machine speed	on the board or	211
	online	
3.Electrical drives with synchronous machines	Free exposure,	
3.1.General relationships and mechanical features for electrical drives	with the	2h
with synchronous machines	presentation of	
3.2.Methods of starting for electrical drives with synchronous	the course with	2h
machines	video projector,	211
3.3.Braking methods for electrical drives with synchronous machines	on the board or	2h
·	online	2h
3.4. Speed control for electrical drives with aynchronous machines		
3.5.Brushless synchronous machine drives		2h
Bibliography		
1. SILAGHI H., SPOIAL V., SILAGHI M. – Ac ion ri electrice, Editura M	ediamira, Oradea, 2	009

- 2. SILAGHI, H., SPOIAL , VIORICA, Ac ion ri electrice-probleme fundamentale i no iuni de proiectare, Ed. Universit ii din Oradea, 2002
- 3. SILAGHI H., SILAGHI M. Sisteme de ac ion ri electrice cu ma ini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIAL D., SPOIAL VIORICA, Ma ini electrice i sisteme de ac ion ri electrice, vol.II, Ed. Universit ii din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIAL , HELGA SILAGHI, Ac ion ri electrice speciale, Editura Universit ii din Oradea, 2010

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory, of the labor protection norms and of		2 h
the conventional signs specific to the field of electric drives. 2. Control of the main shaft to the machine tool GPR 45 NC. Speed selection	Students receive laboratory papers	4 h
3. Control of advances to the GPR 45 NC machine tool	at least one week	4 h
4. Control the revolver head on the GPR 45 NC machine tool	in advance, study them, inspect	2 h
5.Troubleshooting conventional wiring diagrams of the GPR 45 NC	them, and take a	2 h
machine tool	theoretical test at	
6. Design of electrical control diagrams taking into account certain	the beginning of	2 h
operating restrictions	the laboratory.	
7. Study of the frequency converter SO 3536 - 7M and of the pulse	Then, the students carry out	2 h
modulator 8.Presentation of the FUM program for computer control of an electric drive with asynchronous machine powered by a frequency converter	the practical part of the work under the guidance of	4 h
9. Computer operation of an electric drive with an asynchronous	the teacher	4 h
machine powered by a frequency converter		
10. Closing the situation at the laboratory.		2 h
D!11!1		

- Silaghi H., Spoial V., Costea C. Ac ion ri electrice, Îndrumar de laborator, Lito Universitatea din Oradea, 2008
- 6. Viorica Spoial, Helga Silaghi, Drago Spoial Ac ion ri electrice. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Edi ie CD-ROM, 140 pag, 2014

8.3 Academic project	Teaching	No. of hours/
	methods	Observations
	Students receive	
Design of the lifting mechanism of a general purpose overhead crane	the project theme	14h
	and design	
	methodology and	
	under the	
	guidance of the	
	teacher perform	
	the project stages	

Bibliography

1. Silaghi Helga, Spoial Viorica, *Proiectarea ac ion rilor electrice*, îndrum tor de proiectare, Editura Universit ii din Oradea, 2009

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	

10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	20%
10.6 Project	Minimum required conditions for promotion (grade 6): going through the design stages, without deepening the calculations For 10: going through all the design stages, with the completion of the calculations and the electrical supply and control diagrams	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade.	20%

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

		,						
2.1 Name of the subject			Ele	ectro	o-hydro-pneumatic o	equip	ments in automation	
2.2 Holder of the subject			Co	nf. P	hD eng. Tiberiu Bara	bas		
2.3 Holder of the academic			Co	nf. P	hD eng. Tiberiu Bara	bas		
laboratory/project								
2.4 Year of study III 2.5 Semest		er	5	2.6 Type of the	Vp	2.7 Subject regime	SD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	2/-
		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6	28/-
		course		academiclaboratory/proj	
				ect	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes				28	
Supplementary documentation using the library, on field-related electronic platforms and in			8		
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			14		
Tutorials			2		
Examinations					4
Other activities.					

3.7 Total of hours for	56
individual study	
3.9 Total of hours per	112
semester	
3.10 Number of credits	4

4. Pre-requisites(where applicable)

Wile requisites (where approache)							
4.1 related to the	(Conditions)						
curriculum							
4.2 related to skills							

5.1. for the development of	- Attendance at least 50% of the courses	
the course	- The course can be held face to face or online	
5.2.for the development of	- Mandatory presence at all laboratories;	
the academic	- The laboratory/project can be carried out face to face or online	
laboratory/project	- Students come with the observed laboratory works	
	- A maximum of 3 works can be recovered during the semester (25%);	
	- The frequency at laboratory hours below 75% leads to the restoration of	
	the discipline	

6. Spo	6. Specific skills acquired			
skills	C2. Working with fundamental concepts of computer science, information technology and communications.			
Professional skills	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems.			
Transversal skills	CT2. Identification of roles and responsibilities in a pluri specialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.			

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

7.1 The	• The discipline has as objective the familiarization of the students from the		
general	specialization Automation and applied informatics, in a leading field of		
objective of	automation, with electro-hydraulic and electro-pneumatic equipment.		
the subject	Theoretical and practical knowledge of the research, design and use of electro-		
	hydraulic and electro-pneumatic automation equipment and their applications is		
	provided.		
7.2 Specific	• The course aims to present the theoretical elements related to the design and		
objectives	use of electro-hydraulic and electro-pneumatic automation equipment.		
	• The lab familiarizes students with the practical applications of electro-		
	pneumatic automation equipment.		

8. Contents*

	methods	No. of hours/ Observations
Cap.1. PASIVE COMPONENTS OF ELECTRO-HYDRAULIC AUTOMATIZATION EQUIPMENT. Cap.2. ACTIVE COMPONENTS OF ELECTRO-HYDRAULIC AUTOMATIZATION EQUIPMENT. Cap.3. APPLICATIONS OF ELECTRO-HYDRAULIC AUTOMATIZATION EQUIPMENT. Case studies. Cap.4. PASSIVE COMPONENTS AND CIRCUITS OF PNEUMATIC AUTOMATIZATION EQUIPMENT. Cap.5. ACTIVE COMPONENTS OF ELECTRO-PNEUMATIC AUTOMATIZATION EQUIPMENT. Cap.6. APPLICATIONS OF ELECTROPNEUMATIC AUTOMATIZATION EQUIPMENT. Case studies.	Free exposure, with the presentation of the course with video projector, on the board or online	4h 4h 6h 4h 4h 6h

Bibliography

- 1. Barabas, T., Tripe, V. C., **Sisteme i echipamente electro-hidro-pneumatice de automatizare. Aplica ii**, Editura Univ.Oradea, 2003
- 2. B 1 oiu, V., **Echipamente i sisteme hidropneumatice de ac ionare**, Lito. Universitatea Tehnic Timi oara, 1992
- 3. Cristea, P., Echipamente hidraulice i pneumatice de automatizare, Curs, Lito. Institutul Politehnic Ia i, 1986
- 4. Lazea, Gh., **Echipamente de automatizare pneumatice i hidraulice**, Lito. Institutul Politehnic Cluj-napoca, 1986
- 5. Velescu, C., Aparate i echipamente hidraulice propor ionale, Editura Mirton Timi oara, 2003

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
Laboratory work is carried out within an educational CIM system.	Students receive	
The stations and stands with pneumatic and electro-pneumatic drive	laboratory papers	
are studied.	at least one week	
	in advance, study	

]	1. Presentation of the laboratory and the labor protection	them, inspect	2 h
	norms.	them, and take a	2 h
2	2. Study of the operation of the MINI-CIM2000 system	theoretical test at	2 h
	3. Study of semi-automatic operation of the pneumatic station	the beginning of	
	PN2000.	the laboratory.	2 h
2	4. Study of the operation of the MR pneumatic manipulator	Then, the	
	within the PN2800 station.	students carry out	2 h
5	5. Study of the operation of the MP pneumatic manipulator	the practical part of the work under	
	within the PN2800 station.	the guidance of	2 h
6	6. Adjusting the speed of a linear pneumatic motor.	the teacher	2 h
	7. Study of the automatic and semi-automatic operation of the		
	ST2000 station.		2 h
8	3. Study of the operation of the MP pneumatic manipulator		
	within the ST2000 station.		2 h
Ç	O. Control of the execution elements within the FMS2101		
	manufacturing system.		2 h
]	10. Control of a linear pneumatic motor with Blue Earth		
	microcomputer.		2 h
]	11. Closed loop control of the positioning motion of a linear		
	pneumatic motor.		2 h
1	12. Study of hydraulic actuators.		2 h
1	13. Study of conventional signs for hydro-pneumatic		2 h
	symbolization.		
1	14. Closing the situation at the laboratory.		
-			

1. Barabas, T., Tripe, V. C., **Sisteme i echipamente electro-hidro-pneumatice de automatizare. Aplica ii**, Editura Univ.Oradea, 2003

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, FaistMekatronics, Celestica, GMAB, etc.).

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	70 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10:thorough		
	knowledge of all subjects		
	is required		

10.5 Laboratory	Minimum required conditions for promotion	Test + practical application	30%
	•		
	(grade 5): in accordance	At each laboratory	
	with the minimum	students receive a test	
	performance standard	and a grade. Each	
	recognition of the stands	student also receives a	
	used to carry out the	grade for laboratory	
	laboratory works,	work during the semester	
	without presenting	and for the laboratory	
	details on them	work file. This results in	
	For 10: detailed	an average for the	
	knowledge of how to	laboratory.	
	perform all laboratory		
	work		

10.6 Minimum performance standard:
 Selection and use of electro-hydraulic and electro-pneumatic automation equipments.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Ex	peri	mentally systems ide	entifi	cation	
2.2 Holder of the subject			Leo	Lect. PhD eng. Costea Claudiu Raul				
2.3 Holder of the academic			Lect. PhD eng. Costea Claudiu Raul					
seminar/laboratory/project								
2.4 Year of study	III	2.5 Semeste	er 5 2.6 Type of the Ex 2.7 Subject regime			SD		
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 laboratory	2	
3.4 Total of hours from the curriculum	56	of which: 3.5 course	28	3.6 laboratory	28	
Distribution of time			•		hou	
Study using the manual, course support, bibliography and handwritten notes					20	
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					10	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays						
Tutorials						
Examinations						
Other activities.						

3.7 Total of hours for	56
individual study	
3.9 Total of hours per	112
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	Mathematical knowledge, estimation theory, data acquisition systems,
curriculum	programming.
4.2 related to skills	Measurement skills, data acquisition and computer programming.

5. Conditions (where applicable)

5.1. for the development of	- The course can be held face to face or online.
the course	
5.2.for the development of	- The laboratory can be carried out face to face or online.
the academic	- Mandatory presence at all laboratories.

110

semina	seminary/laboratory/project - A maximum of 2 works can be recovered during the semester The frequency at laboratory hours below 70% leads to the restoration of the subject.					on of	
6. Spec	ific skills acquired						
Professional skills	C3. Using automation processes anal		methods of aputer	modeling, aided	simulation, design	identification techni	
	CT2. Identification of assigning tasks, app	roles and respons olying technique				•	ns and orking.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

71 The objectives	of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	presentation of basic knowledge on techniques for estimating dynamic models
general	based on experimental measurements;
objective of	the usefulness of the models identified in solving the problems of control
the subject	systems;
	acquire the skills necessary for process experimentation and developing the
	skills for processing sets of input-output measurements in order to develop
	models to be used in the design stage of algorithms for processes control;
	learning the model validation methods.
7.2 Specific	
objectives	

8. Contents*

8.1 Course	Teaching	No. of hours/
o.i course	methods	Observations
 Introduction to system identification. 1.1. Concepts and definitions. 1.2. Identifying the problem of identification. 1.3. Identification methods. 1.4. Identification procedure. 1.5. The principle of model adjustment. 	Free exposure, with the presentation of the course with video projector, on the board or online	4
 Signals. Signal classes. Sampled signals. Deterministic and stochastic signals. The Laplace Transform. The Z-transform. The Discrete Fourier Transform. The Fast Fourier Transform. 	Free exposure, with the presentation of the course with video projector, on the board or online	4
3. Collection and processing of primary data3.1. Data collection.3.2. Data filtering.		2
4. Model classes.4.1. Classification criteria for linear systems models.	Free exposure, with the	8

 4.2. Non-parametric models. 4.3. Parametric models. 4.4. Structures of polynomial models of discrete stochastic systems. 4.5. Regression description of polynomial model structures. 4.6. Structure of models of the error equation. ARX models. ARMAX models. 	presentation of the course with video projector, on the board or online	
5. Modeling and predicting time series.5.1. Using Box-Jenkins methodology in time series modeling.	Free exposure,	4
5.2. Choosing the structure and validating the model.	with the	
6. Fundamentals of estimation theory.	presentation of the course with	
6.1. Hypotheses and definitions.	video projector,	4
6.2. Properties of the estimators.	on the board or	7
6.3. Estimate using the method of least squares.	online	
7. Synthesis of models used for systems identification.		2

Bibliography

- 1. C.R. Costea, *Identificarea experimental a sistemelor noti e de curs*, în format electronic.
- 2. A. Bara, *Identificarea sistemelor*, Ed. U.T.Pres, Cluj Napoca, 193 pg, ISBN 973-9471-91-9, 2001.
- 3. M. Berger, An introduction to probability and stochastic processes, Springer-Verlag New York, 1993.
- 4. M. Dordescu, *Contribu ii la controlul automat al proceselor hidrodinami*ce, Ed. Matrix Rom, Bucure ti, ISBN 978-973-775-589-2, 186 pg, 2010.
- 5. D. Isoc, Analiza, modelarea si identificarea sistemelor, Ed. Mediamira, Cluj-Napoca, 2001.
- 6. L. Ljung, System identification Theory for the user; Prentice-Hall, Inc., 1995.
- 7. S. erban, Sisteme dinamice liniare. Aplica ii numerice, Ed. Printech, Bucure ti, 2001.
- 8. D. tef noiu, J. Culi , P. Stoica, Fundamentele model rii si identific rii sistemelor, Ed. Printech, Bucure ti, 2005.
- 9. M. Vân toru, Conducerea automat a proceselor industriale, Vol. 1, Ed. Universitaria Craiova, 2001.

8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
	methods	Observations
1. Step response and frequency response analysis.		2
2. First and second order systems analysis.	After the	2
3. Identifying the time constant of the process by the tangent	theoretical	2
method.	presentation of the laboratory	
4. Transformations of systems in representation domains.	work made by the	2
5. Signal filtering.	teacher,	2
6. Using System Identification Tool from Matlab.	the students carry	2
7. Estimation and validation of parametric models.	out the practical	2
8. Model testing using Simulink model.	part of the work under the	2
9. Correlations and regressions.	guidance of the	2
10. The Box-Jenkins methodology used in modeling time series.	teacher.	2
11. Descriptive statistics and statistical tests.		2
12. Parameter estimation using the Least Squares Method.		2
13. Estimators and confidence intervals.		2
14. Ending the situation at the laboratory.		2

Bibliography

- 1. C.R. Costea, *Identificarea experimental a sistemelor îndrum tor de laborator*, Litografiat, 2016.
- 2. A. Bara, *Identificarea sistemelor*, Editura U.T.Pres, Cluj Napoca, 193 pg, ISBN 973-9471-91-9, 2001.
- 3. M. Dordescu, *Contribu ii la controlul automat al proceselor hidrodinamice*, Editura Matrix Rom, Bucure ti, ISBN 978-973-775-589-2, 186 pg, 2010.
- 4. S. Iliescu, C. Soare, I. F g r an, P. Arsene, O. Niculescu, *Analiza i sinteza sistemelor automate. Aplica ii utilizând Matlab/Simulink*, Ed. Printech, Bucure ti, ISBN 973-718-209-X, 107 pg., 2005.
- 5. D. Isoc, Analiza, modelarea si identificarea sistemelor, Editura Mediamira, Cluj-Napoca, 2001.
- 6. T. Popescu, Serii de timp. Aplica ii în analiza sistemelor, Editura Tehnic, Bucure ti, 2000.
- 7. M. Vân toru, Conducerea automat a proceselor industriale, Vol. 1, Editura Universitaria Craiova, 2001.
- 8. M. Vân toru, E. Iancu, C. Maican, G. C nureci, *Conducerea automat a proceselor industriale îndrum tor de laborator*, vol. 1, Editura Universitaria Craiova, 2007.
- 9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the subject can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited this specialization, and aims to establish a link between physical reality and systems theory.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard - it is necessary to have 4 correct answers. For 10, it is necessary to have all correct answers.	Written exam. A test with 9 questions.	70%
10.5 Laboratory	Minimum required conditions for passing the examination (grade 5): in accordance with the minimum performance standard – performing laboratory work with the data provided in each work. For 10, operating skills with the System Identification Toolbox from MATLAB and proving skills in resolving other identification problems than those exposed in the paper.	Test + practical application	30%
10.6 Project	-	-	-

10.7 Minimum performance standard:

Course

- Knowledge of basic concepts and methods regarding the estimation techniques of dynamic models based on experimental measurements.
- Abilities to use the identified models in solving the problems of control systems.
- Acquire the skills necessary for process experimentation and developing the skills for processing sets of input-output measurements in order to develop models to be used in the design stage of algorithms for processes control.
- Learning model validation methods.

Laboratory:

- Abilities to use the identified models in solving the problems of control systems.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Control Systems Engineering and Management
1.4 Field of study	Control Systems Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Ge	nera	l economy			
2.2 Holder of the subject			Ass	Assoc.prof. PhD eng.ec. Liliana Doina M gdoiu				
2.3 Holder of the academic		Leo	Lecturer PhD eng.ec. Zoltan Kovendi					
seminar/laboratory/project								
2.4 Year of study	III	2.5 Semeste	er	6	2.6 Type of the	VP	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum		Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time	Distribution of time				
Study using the manual, course support, bibliography and handwritten notes					14
Supplementary documentation using the library, on field-related electronic platforms and in field-					5
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					10
Tutorials					
Examinations					4
Other activities.					

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

1	
4.1 related to the	
curriculum	
4.2 related to skills	

5.1. for the development of	- attending at least 50% of the course
the course	- the course can be held face to face or online
5.2.for the development of	- mandatory presence at all seminar hours;
the academic	- students come with observed seminar papers
seminar/laboratory/project	- a maximum of 3 seminars can be recovered during the semester (30%);
	- attendance at seminar hours below 70% leads to the restoration of the
	discipline
	- the seminar can be held face to face or online
6 Specific skills acquired	

Professional skills	C6. Apply knowledge of law, economics, marketing, business and quality assurance in the economic and managerial contexts.
	TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

TO PRICE OR JUNEAU TOR	or one discipline (resulting from the give of the specific competences acquired)
7.1 The	 Familiarization of students with the main types of processes and economic
general	phenomena.
objective of	
the subject	
7.2 Specific	 The course aims to present the theoretical elements of general economics
objectives	 The seminar acquaints the students with practical aspects regarding the
	economic-financial flows at business level, the management of the economic and
	financial phenomenon

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Chapter 1. The object of political economy	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 2. The legal character of the economy	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 3. The economic activity	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 4. Economic needs and interests	Free exposure,	2 h
-	with the	
	presentation on-	
	line	
Chapter 5. Company	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 6. Consumer behavior	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 7. Market	Free exposure,	2 h
-	with the	
	presentation on-	
	line	
Chapter 8. Economic competition	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 9. Selling prices	Free exposure,	2 h

	with the	
	presentation on-	
	line	
Chapter 10. Income, Consumption and the saving process	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 11. Economic growth	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 12. The profit of the entrepreneur	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 13. Cyclicality of economic activities	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Chapter 14. Relations with the international market	Free exposure,	2 h
	with the	
	presentation on-	
	line	
Total		28 h

Bibliography

- 1. Rada, Ioan Constantin, Economie, Ed. Anotimp, 2002
- 2. Rada, Ioan Constantin; Rada, Ioana Carmen, Economie. Caiet de lucr ri, Ed. Anotimp & Adsumus, 2002
- 3. Rada, Ioan Constantin; Bodog, Simona;Rada, Ioana Carmen; L zurean, Elena Nicoleta, **Economie general**, **Marketing industrial (note de curs)**, Ed. Universit ii Oradea, 2006
- 4. Rada, Ioan Constantin; Bodog, Simona;Rada, Ioana Carmen; L zurean, Elena Nicoleta, **Economie general , Marketing industrial (aplica ii pentru seminar)**, Ed. Universit ii Oradea, 2006
- 5. Rada, Ioan Constantin, **Economie general I**, Editura Asocia iei "Societatea Inginerilor de Petrol i Gaze", Bucure ti, 2009,CD-ROM
- 6. Rada, Ioan Constantin, **Economie general II**, Editura Asocia iei "Societatea Inginerilor de Petrol i Gaze", Bucure ti, 2009, CD-ROM
- 7. Rada, Ioan Constantin, **Microeconomie. Idei moderne. Vol. I**, Editura Asocia iei "Societatea Inginerilor de Petrol i Gaze", Bucure ti, 2007
- 8. Rada, Ioan Constantin, **Microeconomie. Idei moderne. Vol. II**, Editura Asocia iei "Societatea Inginerilor de Petrol i Gaze", Bucure ti, 2008

8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
	methods	Observations
 Paper: Consumer concepts Report: About resources Paper: The concept of competition Paper: The role of the environment in obtaining production factors Report: The information system of the enterprise Paper: Substantiation of production cost decisions Report: The production price and the profit of the entrepreneur 	Students receive homework for the seminar papers or choose their homework at least a week in advance, study, design the papers and present them at the seminar. Appreciations and comments are made under the guidance of the teacher.	2 h 2 h 2 h 2 h 2 h 2 h 2 h
Total		14 h
Bibliography		
It is the one indicated for the course		

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is found in the curriculum of Automatics and Applied Informatics from other university centers that have accredited these specializations ("Politehnica" University of Timisoara, Technical University of Cluj-Napoca, Gh. Asachi Iasi, etc.), and knowledge the main types of processes and economic phenomena at microeconomic level, the theoretical elements of microeconomics and practical aspects regarding the economic-financial flows at business level, the management of economic and financial phenomenon is a stringent requirement of any employer in the field (Faist Mekatronics, Celestica, Comau, GMAB etc).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percent from the
		methods	final mark
10.4 Course	- for grade 5 it is necessary	Written exam	70%
	to know the fundamental	Students receive pre-	
	notions required in the	arranged topics for	
	subjects, without presenting	solving	
	details on them		
	- for grade 10, a thorough		
	knowledge of all subjects is		
	required		
10.5 Seminar	- for note 5, it is necessary to	At each seminar, the	30%
	know the structure of the	students prepare a	
	paper and one or two notions	report, which can be	
	from the paper	collective, which they	
	- for grade 10, the detailed	support and which is	
	knowledge of the issue and	submitted to the debates	
	its support during the	during the seminars.	
	seminar	Each student also	
		receives a grade for the	
		seminar activity during	
		the semester	

10.6 Minimum performance standard:

Course: - Solving and explaining problems of medium complexity, associated with the discipline of microeconomics or general economics, specific to the field of engineering and management

- Participation in at least half of the courses.

Seminar: - Designing economic-financial processes at business level, for a given situation - Participation in all seminar work.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject				Linear Systems Control (IRA I)				
2.2 Holder of the subject			Lect. PhD Sanda Dale					
2.3 Holder of the academic			Le	Lect. PhD Claudiu Costea				
laboratory/project								
2.4 Year of study	III	2.5 Semeste	nester 6 2.6 Type of the Ex 2.7 Subject regime			2.7 Subject regime	DD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	2
*		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6	28
		course		academiclaboratory/proj	
				ect	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					40
Supplementary documentation using the library, on field-related electronic platforms and in					20
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					25
Tutorials					
Examinations					9
Other activities.					

3.7 Total of hours for	94
individual study	
3.9 Total of hours per	150
semester	
3.10 Number of credits	6

4. Pre-requisites(where applicable)

ii i i c i cquisites (ii iici	c applicable)
4.1 related to the	- Mathematics
curriculum	- Linear Systems Theory
4.2 related to skills	Systems Modelling and Simuling, MATLAB environment

5.1. for the development of	- Attendance at least 50% of the courses			
the course	- The course can be held face to face or online			
5.2.for the development of	- Mandatory presence at all laboratories;			
the academic	- The laboratory/project can be carried out face to face or online			
laboratory/project	- Students come with the observed laboratory works			
	- A maximum of 4 works can be recovered during the semester (30%);			
	- The frequency at laboratory hours below 70% leads to the restoration of			
	the discipline			
6. Specific skills acquired				

Professional skills	 C1.Modern methods for analysis and design of control linear systems in time or frequency domain. C2.Analysis and design of control systems using MATLAB &Simulink environment. C5. Methods for control laws implementation.
Transversal skills	TC1. Analysis and design of Electrical, Mechanical, Thermal,, systems control TC2.Identify the roles and responsibilities of each member of a pluri-disciplinary team and apply efficient work and relational techniques inside the team.

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	or the table print (resulting from the grid of the specific competences acquired)
7.1 The general objective of the subject	The main task of the course consists in learning of modern methods of analysis and design of linear control of dynamic systems
7.2 Specific objectives	 The course aims to present the theoretical and practical elements on control of linear systems. The laboratory familiarizes students with practical aspects of analysis by control systems simulations using MATLAB&SIMULINK.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction in Control Systems1.1. Closed-loop control versus open-loop control1.2.Design and Compensation of Control Systems	Free exposure, with the presentation of the course with video projector, on the board or online	2h
2. Mathematical Modeling of Control Systems 2.1. Transfer function and Impulse-Response Function 2.2.Modeling in state-space	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h
3. Transient and Steady –State Response Analyses 3.1. First, second, higher- order systems 3.2. Routh's Stability Criterion 3.3. System Performances Defining	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h
4. Control Systems Analysis and Design by the Root-locus Method 4.1. Root-locus plots 4.2. Root-locus approach to control systems design 4.3. Lead, lag, lead-lag compensation	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h

5. Control Systems Analysis and Design by the Frequency-Response Methods 5.1 Bode and Polar diagrams 5.2 Nyquist stability criterion 5.3 Control systems design by Frequency-Response Methods 5.4 Lead, Lag, Lead-Lag Compensation	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h 2h 2h
6. PID Controllers and Modified PID Controllers	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 7 Control System Design in State Space 7.1 Controllability. Observability 7.2 Pole Placement Method 7.3 State Observers 7.4 Quadratic Optimal Control 	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h 2h
Bibliography 1. Ogata,K. Modern Control Engineering, Prentice Hall 2010 2. Dorf.,C.R, Bishop, H.R. – Modern Control Systems, Prentice-Hall, 1 3. Bara, A., Ingineria Reglarii Automate	997	
8.2 Academic laboratory	Teaching methods	No. of hours/ Observations 2h
Bibliography 7.		
8.3 Academic project	Teaching methods	No. of hours/ Observations

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	60 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	

	accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	3 subjects of theory and an application.	
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	20%
10.6 Project	Minimum required conditions for promotion (grade 6):going through the design stages, without deepening the calculations For 10: going through all the design stages, with the completion of the calculations and the electrical supply and control diagrams	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade.	20%

10.6 Minimum performance standard:

Course:Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory:Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology..

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics/ Bachelor in engineering

2. Data related to the subject

2.1 Name of the subject			Fu	Fuzzy Systems and Neural Networks				
2.2 Holder of the subject			Leo	Lecturer Phd. eng. Sanda DALE				
2.3 Holder of the academic		Leo	Lecturer Phd. eng. Sanda DALE					
seminar/laboratory/project								
2.4 Year of study	2.4 Year of study IV 2.5 Semest		er	8	2.6 Type of the	Ex	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/ -
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time					56 h
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in field-					8
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14
Tutorials				2	
Examinations					4
Other activities.					

3.7 Total of hours for individual study	56
3.9 Total of hours per semester	98
3.10 Number of credits	6

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of algebra, mathematical analysis, computer programming, modeling
curriculum	and simulation, system theory, control engineering, MATLAB+SIMULINK
4.2 related to skills	

	-/			
5.1. for the development of	- minimum 50% course attendance			
the course	- the course can be held face-to-face or online			
5.2.for the development of	- The presence is mandatory at 6 from 7 labs			
the academic	- The recovery of 1 lab is possible during the semester			
seminary/laboratory/project	- A portfolio with the results from all labs have to be completed at the			
	end of the semester			
6. Specific skills acquired				

Professional skills	C3. Using automation fundamentals, methods of modeling, simulation, identification and processes analysis, computer aided design techniques. C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded
Transversal skills	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working. CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

<u> </u>	1 (6 6 1 1 1 /
7.1 The general	 Students to acquire general knowledge, aptitudes and skills on using specific
objective of the subject	concepts in knowledge-based systems
7.2 Specific objectives	The course has the aim to present the concepts related to specific concepts
	related to knowledge-based systems, their design methods and implementation
	 During the lab, the students will get familiar with design methods of
	knowledge-based systems; students acquire operating skills on using FUZZY
	LOGIC i NEURAL NETWORK from MATLAB+SIMULINK.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
CAP 1. Introduction. Knowledge-based systems.		2h
CAP 2. Fuzzy systems. Fuzzy logic elements.		
2.1. Fuzzy sets		
2.2. Operators on fuzzy sets		<i>a</i>
2.3. Modificators on fuzzy sets		6h
2.4. Fuzzy logic. Modus-ponens principle. Composotional		
law of inference.		
CAP 3. Fuzzy control systems		
3.1. Fuzzy modeling		
3.2. Fuzzy identification principles	Free exposure,	Ch.
3.3. Fuzzy control. Fuzzy controllers structure. Mamdani	course presentation	6h
and Sugeno controllers. Design principles for fuzzy	on video projector,	
controllers.	on the board or	
CAP 4. Interpolative control systems based on rules	online	
4.1. Interpolative reasoning		
4.2. Approximation and interpolation		4h
4.3. Using interpolative techniques in fuzzy structures		411
4.4. Interpolation and approximation techniques based on		
rules applied to process control		
CAP 5. Neural control systems. Fundaments of ANN		
5.1. ANN attributes		
5.2. ANN models		4h
5.3. Learning algorithms for ANN		711
5.4. ANN Topologies		
5.5. ANN Characteristics		
CAP 6. Paradigms or ANN architectures	Free exposure,	2h
CAP 7. Aspects related to neural control	course presentation	
7.1. Modeling and identification based on ANN	on video projector,	4h
7.2. Neural control	on the board or	

|--|

Bibliography

- 1. **1. S. Dale**, Sisteme fuzzy i re ele neurale, noti e de curs in format electronic.
- 2. **S. Dale**, *Contribu ii la studiul sistemelor de conducere de tip interpolativ*, Ed. Politehnica, Timi oara, 2006.
- **3. K. Passino, S. Yurkovitch,** *Fuzzy Control*, Addison Wesley Longman, 1998.
- 4. **Al. Bara,** Sisteme fuzzy aplica ii la conducerea proceselor, Ed. UT. Pres, Cluj Napoca, 2001.
- 5. **I.Dumitrache, N. Constantin, M. Dr goicea**, Re ele neuronale Identificarea i conducerea proceselor, MatrixRom, Bucure ti, 1999.

8.2 Laboratory	Teaching methods	No. of hours/
		Observations
1. Knowledge reference frame description		2h
2. Rule-basis and inference mechanism implementation		2h
3. Mamdani fuzzy control system design for a positioning mechanism4. Takagi-Sugeno fuzzy control system design for a nonlinear	The students realize the practical part of	2h
system	the labs, guided by the teacher, using the	2h
5. Interpolative control system design for a positioning mechanism	didactic stands in the lab and computer-	2h
6. Direct-inverse neural control applied to position control of a suspension system (GT)	aided design.	2h
7. Direct-inverse neural control applied to position control of a		
suspension system (ST)		2h
Bibliography		

1. S. Dale, Sisteme fuzzy i re ele neurale, fascicole de laborator, variant electronic .

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found also in the curriculum of Automatics and Applied Informatics from other academic centers with accreditation in this field (Universitatea "Politehnica" Timi oara, Universitatea Tehnic Cluj-Napoca, etc), and the knowledge of analysis and design methods specific to knowledge-based systems is a stringent requirement of the employers in the branch ((Plexus, Celestica, Comau, Continental etc).)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Minimum required	Written exam:	70%
	conditions for passing	Students receive	
	the exam (mark 5): in	individually for solving 5	
	accordance with the	theoretical and applied	
	minimum performance	topics.	
	standard, without	The evaluation can be	
	presenting details	done face to face or	
	For 10: throughout	online.	
	knowledge of all subjects		
10.5 Academic seminar			
10.6 Laboratory	Minimum required	Lab tests and results	30%
	conditions for passing	presentations	
	the examination (grade	Every lab will end with a	
	5): in accordance with	result presentation and a	
	the minimum	test. All of these will be	
	performance standard:	presented at the end and	
	analysis and design for	graded.	
	simple knowledge-based		
	control systems using	The evaluation can be	
	MATLAB+SIMULINK	done face to face or	
	For 10: analysis and	online.	

	design for complex knowledge-based control systems using MATLAB+SIMULINK	
10.7 Project		

10.8 Minimum performance standard:

Course:

- Knowledge of specific issues related to knowledge-based system approach, design and implementation methods, at conceptual level
- Ability to use the methods of analysis and design methods for knowledge-based systems for processes. Academic seminar:

<u>Laboratory</u>: - Skills regarding: analysis and design for a knowledge-based system using computer-aided design methods and MATLAB+SIMULINK (FUZZY LOGIC and NEURAL NETWORKS TOOLBOX)

- Ability to identify the situations in which is useful to introduce a knowledge-based control system Project:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Ind	lustr	ial informatic systems	3		
2.2 Holder of the subject			Leo	Lect. PhD eng. Costea Claudiu Raul				
2.3 Holder of the academic		Lect. PhD eng. Mesaros Diana Monica						
seminar/laboratory/project								
2.4 Year of study IV 2.5 Semest			er	8	2.6 Type of the	Vp	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 laboratory	2	
		course				
3.4 Total of hours from the curriculum	56	of which: 3.5	28	3.6 laboratory	28	
		course				
Distribution of time		-			hou	
rs						
Study using the manual, course support, bibliography and handwritten notes						
Supplementary documentation using the library, on field-related electronic platforms and in field-					7	
related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14	
Tutorials					2	
Examinations					3	
Other activities.					2	

3.7 Total of hours for	56
individual study	
3.9 Total of hours per	112
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the curriculum	Basic knowledge of object-oriented programming, knowledge of the principles of operation and programming of a microcontroller, programmable automaton and an
Cufficulum	
	industrial robot.
4.2 related to skills	

() T	-/
5.1. for the development of	- The course can be held face to face or online.
the course	
5.2.for the development of	- The laboratory can be carried out face to face or online.
the academic	- Mandatory presence at all laboratories.
seminary/laboratory/project	- A maximum of 2 works can be recovered during the semester.
	- The frequency at laboratory hours below 70% leads to the restoration of
	the subject.

6. Spec	ific skills acquired						
	C3. Using automation fundamentals, methods of modeling, simulation, identification and						
	processes analysis, computer aided design techniques.						
Professional skills	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems.						
ırsal	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working.						
Transversal skills	CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development.						

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	The discipline aims to present strategies, methods, techniques and tools for designing
general	and implementing a computer system or application in connection with other
objective of	technological, automation and computer disciplines. Both the theoretical and practical
the subject	aspects of the implementation of informatics systems are presented.
7.2 Specific	 Knowledge of methods for analyzing an information system in order to design an
objectives	informatics system.
	 Knowledge of the basic principles, stages and techniques of designing an informatics
	system.
	 Learning techniques for implementing and operating information systems.
	 Knowledge of methods for making documentation.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. General considerations regarding informatics applications.		2
2. General principles to create informatics systems.		
2.1. Stages to create informatics systems.		2
2.2. Stages to create the program-products.		2
2.3. Aspects regarding the evolution of an informatics system.		
3. The technology to create an informatics product.		
3.1. General considerations.		
3.2. Informatics systems modeling.		2
3.3. Features of informatics products.	Free exposure,	2
3.4. Strategies for designing and implementing an informatics	with the	
system.	presentation of	
3.5. Techniques for creating an informatics product.	the course with	2
3.6. Methods for creating an informatic product.	video projector, on the board or	2
4. The technological framework for the realization and	on the board or online	
maintenance of informatics systems.	Offffile	
4.1. Elaboration of the realization theme.		2
4.2. Standards used in the analysis and design of informatics		
systems.		
4.3. Overall system design.		2
4.4. System analysis.		2
5. Computer modeling of processes.		2
5.1. Organizing a flow of activities.		
5.2. Activity flow modeling.		2
5.3. Petri net modeling.		2

5.4. Mapping concepts in Petri nets.	2
5.5. Workflow management.	2
5.6. Analysis of data flows and activities.	2
5.7. Functions and architecture of a system of activity flows.	2
6. Design and implementation of SCADA applications.	2

Bibliography

- 1. Claudiu Raul Costea, "Controlul proceselor cu aplica ii la fabricarea cimentului", Editura Universit ii din Oradea, ISBN 978-606-10-1475-0, 2015.
- 2. Adina Cretan, "Analiza si proiectarea sistemelor informatice", Editura Pro Universitaria, 2013.
- 3. Ioana Fag r an, Analiza si proiectarea sistemelor informatice industriale suport de curs, 2016.
- 4. Daniela Hossu, Ioana F g r an, Andrei Hossu, "Proiectarea aplica iilor SCADA Studii de caz", Editura Printech, Bucure ti 2013.
- 5. Daniela Hossu, Ioana F g r an, Iulia Dumitru, Nicoleta Arghira, Sergiu Stelian Iliescu, "Ghid practic de proiectare si implementare a aplica iilor SCADA", Editura Conspress, Bucure ti 2013.
- 6. Sergiu Stelian Iliescu, Patricia Arsene, Ioana F g r an, Dan Pup z , "Analiza de sistem în informatica industrial ", Editura AGIR, Bucure ti 2006.
- 7. T. Jucan, F.L. iplea, "Re ele Petri. Teorie si practic", Editura Academiei Române, Bucure ti, 1999.
- 8. D. Oprea, G. Me ni , F. Dumitriu, Analiza sistemelor informa ionale, suport curs, Ia i, 2016.
- 9. Octavian P str vanu, Mihaela Matcovschi, Cristian Mahulea, "Aplica ii ale Re elelor Petri în studierea sistemelor cu evenimente discrete", Editura Gh. Asachi, 2002.
- 10. Gh. Sebestyen, "Informatica industrial", Ed. Albastr, Cluj-Napoca, 2006.

8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory, labor protection norms, structure of		2
principle and working regimes for the flexible manufacturing system		
CIM 2000.		
2. Soft control of the CIM-2000 system. System tasks. Operator		2
interface.	After the	
3. The structure of the CIM-2000 communication network.	theoretical	2
4. Central computer. Main-Control program.	presentation of	2
5. Command and control program of the PN-2800 pneumatic station.	the laboratory	2
6. Command and control program of the ST-2000 automatic	work made by the	2
warehouse. Strategies of occupying.	teacher,	
7. Command and control program of the Vision 2000 station.	the students carry	2
8. Facilities for software processing of the image of the test piece	out the practical part of the work	2
within the Vision 2000 station.	under the	
9. Slide motion control program of the RV-M1 robot.	guidance of the	2
10. NCL-2000 lathe control program.	teacher.	2
11. Modeling using Petri nets.		2
12. Simulation of Petri nets using the Petri Nets Simulator		2
application.		
13. Design of a human-machine interface for the water pumping		2
process.		
14. Ending the situation at the laboratory.		2

Bibliography

- 1. Claudiu Raul Costea, "Controlul proceselor cu aplica ii la fabricarea cimentului", Editura Universit ii din Oradea, ISBN 978-606-10-1475-0, 2015.
- 2. C.R. Costea, H. Silaghi, L. Matica, E. Gergely, G. Husi, L. Coroiu, "Graphical Interface Design for Water Pumping Process which Works with a Hydrophore", The Scientific Bulletin of Electrical Engineering Faculty, Year 16, No. 1 (33), ISSN (Print) 1843-6188, ISSN (Online) 2286-2455, November 2016.
- 3. A. Cretan, "Analiza si proiectarea sistemelor informatice", Editura Pro Universitaria, 2013.
- 4. C. Girault, R. Valk, "Petri Nets for Systems Engineering. A Guide to Modelling, Verification, and Applications", Springer-Verlag, 2001.
- 4. L.M. Matica, "Informatica de proces îndrum tor de laborator", Editura Universit ii din Oradea, 1996.
- 5. L.M. Matica, A. Abrudan-Purece, "Sisteme distribuite în automatiz ri complexe îndrum tor de laborator", Editura Universit ii din Oradea, 2006.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the subject can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited this specialization, for example Universitatea Politehnica Timi oara. The operation and programming exercises are considered to be some of the most useful, in order to adapt with the industrial environment and for a faster integration in production.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard – it is necessary to know the basic notions required for three of the five topics, without presenting details on them. - For 10, it is necessary to have a thorough knowledge of all topics and the correct solution of the application.	Written exam. Students receive five topics to solve, of which two are applications.	70%
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard - it is necessary to know the applications used to perform laboratory work, without presenting details about them For 10, it is necessary the detailed knowledge of the way of concrete implementation of all the applications targeted by each laboratory work.	Test + practical application. Students receive tests and a grade on each test. Also, each student receives a grade for the current activity during the semester and for the file with the laboratory works. Thus, an average is obtained for the activity related to the laboratory works.	30%
10.6 Project	- 1 1	-	-

10.7 Minimum performance standard:

Course:

- Ability to describe the general principles of computer systems.
- Ability to present the technology to create a software product.
- Ability to modeling processes.
- Design and construction of Petri nets.
- Using scientific, engineering and computer systems concepts and methods.
- Solving problems using the tools of science and systems engineering.
- Evaluating and improving the performance of informatics systems.
- Analysis, design and implementation of informatics systems.

Laboratory:

- The ability to describe the principles of automatic processing (at the central station, the pneumatic station, the automatic warehouse, the flexible processing station with Mitsubshi industrial robot, the automatic lathe and at the quality control station) within the flexible manufacturing system CIM 2000.

- Ability to describe the differences between manual and automatic operating mode for flexible manufacturing systems.
- Design, life cycle management, integration and integrity of informatics systems.
 Knowledge of the principles of informatics systems design.
 Design, modeling and simulation of Petri nets.

1. Data related to the study program

, , , , , , , , , , , , , , , , , , ,	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

		,						
2.1 Name of the subject			Inc	dust	rial robots control			
2.2 Holder of the subject			Co	Conf. PhD eng. Tiberiu Barabas				
2.3 Holder of the academic			Le	ct. P	hD eng. Zoltan Koven	di		
laboratory/project								
2.4 Year of study	IV	2.5 Semest	er	8	2.6 Type of the	Vp	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	1/1
		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6	14/14
		course		academiclaboratory/proj	
				ect	
Distribution of time					
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in					14
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					18
Tutorials					
Examinations					4
Other activities.					

3.7 Total of hours for	56
individual study	
3.9 Total of hours per	112
semester	
3.10 Number of credits	4

4. Pre-requisites(where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses			
the course	- The course can be held face to face or online			
5.2.for the development of	- Mandatory presence at all laboratories;			
the academic	- The laboratory/project can be carried out face to face or online			
laboratory/project	- Students come with the observed laboratory works			
	- A maximum of 2 works can be recovered during the semester (30%);			
	- The frequency at laboratory hours below 70% leads to the restoration of			
	the discipline			

6. Spec	6. Specific skills acquired						
	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering.						
skills	C4. Design, implementation, testing, use and maintenance of general-purpose systems and dedicated equipment, included computer networks for automation and applied informatics applications.						
Professional	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems.						
Transversal skills	 CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working. CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development 						

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)					
7.1 The	• The discipline has as objective the familiarization of the students from the				
general	specialization Automation and applied informatics, with methods of motion				
objective of	control at the industrial robots, as well as methodologies of design and				
the subject	generation of trajectories.				
7.2 Specific	• The course aims to define the general problems related to the controlling of				
objectives	robots, to review the main kinematic calculations used in the control of robots				
	(direct and reverse kinematics) as well as to study the different methods of				
	control the industrial robots (control in Joint coordinates, control in Cartesian				
	coordinates, etc.).				
	The laboratory familiarizes students with the basic kinematic calculations used				
	in the control of the robots, with the computer implementation of the various				
	basic methods related to the generation of trajectory.				
	• The project proposes the individual implementation of the knowledge				
	provided in the course, in a computer application, related to the control of an				
	industrial robot.				

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Cap.1. The problem of the control of an industrial robot. Cap.2. The main kinematic calculations used in the control of the industrial robots. Cap.3. Control of robot motions in Joint coordinates. Cap.4. Control of robot motions in Cartesian coordinates. Cap.5. Control of robot motions in the Cartesian space with orientation in Joint coordinates.	Free exposure, with the presentation of the course with video projector, on the board or online	4h 6h 6h 6h 6h

Bibliography

- 9. T., Barabas, T., Vesselenyi, **Robotic Conducerea i programarea robo ilor industriali Probleme i metode de baz**, Editura Universit ii din Oradea, 2004
- 10. T., Vesselenyi, T., Barabas, Comanda robo ilor. Aplica ii, Editura Universit ii Oradea, 2006;
- 11. B., Lantos, Robotok Irányitása, Akademiai Kiado, Budapest, 1991
- 12. L cr mioara Stoicu -Tivadar, **Programarea robo ilor industriali i a ma inilor unelte cu comand numeric** *curs*, Universitatea "Politehnic " Timi oara, 1996
- 13. John J.Craig Introduction to Robotics (Mechanics and Control) CRC Press 2005

	- ,	
8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
	Students receive	
1. Presentation of the laboratory and of the labor protection	laboratory papers	2 h
norms.	at least one week	

2. Direct kinematic calculation used in robot control.	in advance, study 2 h
3. Reverse kinematic calculation used in robot control.	them, inspect 2 h
4. Generating the trajectory of industrial robots with polynomial driving functions of 3 degree.	them, and take a theoretical test at
5. Generating the trajectory of industrial robots with polynomial driving functions of 5 degree.	the laboratory.
6. Generating the trajectory of industrial robots with driving functions with trapezoidal speed profile.	Then, the students carry out the practical part
7. Closing the situation at the laboratory.	of the work under the guidance of the teacher
Bibliography	

8. T., Barabas, Conducerea robo ilor industriali, Îndrum tor de laborator, Universitatea din Oradea, 2005

8.3 Academic project	Teaching	No. of hours/
	methods	Observations
Within the project, a computer application related to robot control is carried out by implementing the method of generating the trajectory with driving functions of the 5 degree, for an industrial robot of type: TTTRRR, TRTRRR, RTTRRR, TTRRRR, RRRRRR, TRRRR, TRRRR, TRRRR, TRRRR, TRRRR, TRRRR, TRRRR, TRRRR, TRRRR.	Students receive the project theme and design methodology and under the guidance of the teacher perform the project stages	14h

Bibliography

1. M. Gavri, T. Barabas, Comanda, conducerea i programarea robo ilor – Îndrum tor de proiect, Universitatea Oradea, 1996.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, FaistMekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 % (6 points out of 10)
10.5 Laboratory	Minimum required conditions for promotion	Test + practical application	20% (2 points out of 10)

	(grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	
10.6 Project	Minimum required conditions for promotion (grade 6):going through the design stages, without deepening the calculations For 10: going through all the design stages, with the completion of the calculations and the program implementation.	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade.	20% (2 points out of 10)
10.6 Minimum performation	nce standard: 5 points out of	10.	

1. Data related to the study program

20 2 doubt 2 drawer to that State, program	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the su	bject		Or	Optimal and Adaptive Control Systems				
2.2 Holder of the subject PhD Adrian Codoban								
2.3 Holder of the academic		PhD Adrian Codoban						
laboratory/project								
2.4 Year of study	IV	2.5 Semest	er	7	2.6 Type of the evaluation	Ex	2.7 Subject regime	DD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	2/0
		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28/0
		course		laboratory/project	
Distribution of time 1					hours
Study using the manual, course support, bibliography and handwritten notes				40	
Supplementary documentation using the library, on field-related electronic platforms and in			20		
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				25	
Tutorials					
Examinations				9	
Other activities.					

3.7 Total of hours for	94
individual study	
3.9 Total of hours per	164
semester	
3.10 Number of credits	6

4. Pre-requisites(where applicable)

4.1 related to the	- Mathematics
curriculum	- Linear Systems Theory
4.2 related to skills	Systems Modelling and Simuling, MATLAB environment

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	ific skills acquired
	C1. Modern methods for analysis and design of optimal and adaptive control systems in time or
skills	frequency domain .
Professional	C2. Analysis and design of control systems using MATLAB & Simulink environment.
rofes	C5. Methods for control laws implementation.
Д	
sal	TC1. Analysis and design of Electrical, Mechanical, Thermal,, systems control
Transversal skills	TC2.Identify the roles and responsibilities of each member of a pluri-disciplinary team and apply efficient work and relational techniques inside the team.

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	or the table print (resulting from the gree of the specific competences acquired)
7.1 The general objective of the subject	The main task of the course consists in learning of modern methods of analysis and design of nonlinear control of dynamic systems
7.2 Specific objectives	 The course aims to present the theoretical and practical elements on control of nonlinear systems. The laboratory familiarizes students with practical aspects of analysis by control systems simulations using MATLAB&SIMULINK.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction to Mathematical Optimal Control Theory 1.1. Introduction 1.2. Controllability, bang-bang principle 1.3 Linear time-optimal control 1.4 Euler Lagrange Equation 1.5 Solutions of Euler Lagrange Equation 1.6 The Pontryagin Maximum Principle 1.7 Introduction to Stochastic Control Theory 2. Adaptive Control 2.1. Stability Problems 2.2. On-line Parameters Estimation 2.3 Model Reference Adaptive Control 2.3.1 Simple Direct MRAC Schemes 2.3.2 MRC for SISO Plants 2.4 Indirect MRAC 2.6 Adaptive Pole Placement Control	Free exposure, with the presentation of the course with video projector, on the board or online Free exposure, with the presentation of the course with video projector, on the board or online	14h

Bibliography

- 4. Evans, L. An Introduction to Mathematical Optimal Control Theory, University of California, Berkeley
- 5. Robust Adaptive Control
- 6. Bara, A., Ingineria Reglarii Automate

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
		28h
Bibliography		
9.		
8.3 Academic project	Teaching	No. of hours/
	methods	Observations
		14h

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	20%
10.6 Project	Minimum required conditions for promotion (grade 6):going through	Oral presentation Following the presentation of the	20%

the design stages,	project completed during	
without deepening the	the semester, each	
calculations	student receives a grade.	
For 10: going through all		
the design stages, with		
the completion of the		
calculations and the		
electrical supply and		
control diagrams		

10.6 Minimum performance standard:

Course:Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory:Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		Process Interfaces					
2.2 Holder of the subject			Pro	f.un	iv.dr.ing. Gabriela T	on		
2.3 Holder of the ac	caden	ademic		Prof.univ.dr.ing. Gabriela Ton				
laboratory/project								
2.4 Year of study	IV	2.5 Semeste	er	r 7 2.6 Type of the		Vp	2.7 Subject regime	0
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1
_		course		laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		laboratory/project	
Distribution of time 42				42ore	
Study using the manual, course support, bibliography and handwritten notes				16	
Supplementary documentation using the library, on field-related electronic platforms and in			10		
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays 10			10		
Tutorials			2		
Examinations 4			4		
Other activities.					

3.7 Total of hours for individual study	42
3.9 Total of hours per	84
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

	io applioners)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline
6. Specific skills acquired	

l skills	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering
Professional	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems
rsal	TC2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working
Transversal skills	TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	The main objective is to acquire general knowledge, skills and abilities related to
general	the process interfaces used with personal computers, both in terms of hardware
objective of	and software.
the subject	
7.2 Specific	The course aims to present specific concepts related to process interfaces, both as
objectives	hardware structures, as a way to connect them to the computer, and software, as a user
	interface
	During the laboratory activity, students become familiar with the use of hardware
	interfaces (data acquisition and generation devices), and software (user interface) using
	the LabVIEw graphical application development environment of National Instruments
	and PCI data acquisition cardsMIO-16E-4.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
CHAPTER.1. Introductory notions of process interfaces Numerical processing systems 1.1.1. Common elements of numerical processing systems 1.1.2. Advantages of computer - based numerical processing	Free exposure, with the presentation of the course with video projector,	2h
systems 2. Introduction to the LabVIEW application development environment 3. Notions of measurement and data acquisition 1.3.1. signals acquired from the process	on the board or online	4h
1.3.2. signals acquired from the process 1.3.2. signals generated to the process 4. LabVIEW Configuration Utility: MAX (Measurement and Automation eXplorer)		2h
1.4.1. physical channel, virtual channel and configuration of virtual channels with MAX 1.4.2. Test panels of a data acquisition device		4h
CHAPTER.2. The structure of a process interface 2.1. Types of signal conditioning	Free exposure, with the	2h
2.2. Correlation of the operation of sampling and storage circuits and analog-to-digital converters	presentation of the course with	2h
2.3. Digital-to-analog converters	video projector, on the board or online	2h
2.4. Analog outputs of data acquisition devices.2.5. Analog to digital converters2.6. Analog inputs of data acquisition devices	omme	2h 2h
2.7. Types of signal sources and connections for signals		

Bibliografie

- [1]. Gabriela Tont, Interfețe de proces, curs pentru uzul studentilor, Editura Universitatii din Oradea. 2018
- [2]. L. Toma, Sisteme de achiziție și prelucrare numerică a semnalelor, Ed. de Vest, Timi oara, 1997.
- [3]. C. orândaru, Instrumentație virtuală în ingineria electrică, Editura Orizonturi universitare, Timi oara, 2003.
- [4]. T. Ozkul, Data Aquisition and Process Control Using Personal Computers, Marcel Dekker Inc., Teknomed Engineering, Istanbul, Turkey, 1996.
- [5]. ***, LabVIEW Fundamentals, Manual National Instruments August 2007.
- [6]. INOR Intelligence, Signal Conditioning, Catalog and Specifier's Guide 1998-99.
- ***, 1-7000 Bus Converter User s Manual, version 1.6, feb 2005, 7PH-006-10
- [8]. ***, LabVIEW Core 1, Course Manual, course software version 2009, october 2009 Edition.
- [9]. ***, LabVIEW Core 1, Exercises, course software version 2009, october 2009 Edition.
- [10]. Ionescu &Ionescu s.a., Automatica de la A la Z,
- [11]. V. Maier, C.D. Maier, LabVIEW in calitatea energiei electrice, Editura Albastr , Cluj-Napoca, 2000
- [12]. Tiberiu S. Leția, Sisteme de timp real, Editura Albastr, Cluj-Napoca, 2000
- [13]. Dennis S. Bernstein, Jacob Apkarian, Experiments for Control research, pgs10-13, in Control System Magazine, IEEE, october 2003, volume 23, number 5.
- [14]. **N. Ionescu-Cruțan**, *Dicționar de calculatoare englez-român*, Editura Niculescu, Bucure ti, 1999.
- [15]. ***, DAQ E Series User Manual,
- [16]. http://digital.ni.com/manuals.nsf/websearch/1A2B0F3938B5B895086257B, Edition Date: February 2007, Part Number: 370503K-01

Date. I coluary 2007, I art Number. 370303K-01		
8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Study with LabVIEW virtual tools	Students receive	2h
2. Customizing an IV	laboratory papers	
3. Analysis and saving of a signal, complete and professional	at least one week	2h
4. LabVIEW MAX Utility. Simulation of data acquisition devices.	in advance, study	
Test panels of a data acquisition device. PCI-MIO-16E-4 data	them, inspect	2h
acquisition device application	them, and take a	
5. Analog inputs of the PCI-MIO-16E-4. Differential configuration	theoretical test at	2h
of analog signals. Acquisition of voltage signals from floating	the beginning of	211
sources. Signal conditioning by isolation and attenuation	the laboratory.	2h
	Then, the	211
6. PCI-MIO-16E-4 analog outputs. Generation of voltage signals.	students carry out	21
Analysis of a process for establishing the signals to be acquired and	the practical part	2h
generated.	of the work under	
7. Driving an open loop DC motor.	the guidance of the teacher	2 h
	the teacher	
701111111111111111111111111111111111111		

Bibliography

10. Gabriela Tont, *Interfețe de proces, Indrumator de laborator*, Editura Universitatii din Oradea. 2018

- 11. LabVIEW Getting Started manual, edițiile pentru LabVIEW 7.1, 8.5, 8.6 i2011
- 12. Baza de exemple LabVIEW
- 13. LabVIEW Help, manualele pentru versiunile 7.1, 8.5, 8.6, 2010 i 2011 ale LabVIEW.
- 14. Introduction to LabVIEW, Six-Hour Course, http://www.ni.com/white-paper/5241/en/

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): -for note 5, identification of the elements corresponding to a virtual tool, establishment of the necessary for the practical realization of an application for acquisition and generation of data using a set of personal computer, DAQ device and the development environment of graphic applications LabVIEW - for note 10, the establishment of the necessary functions for the realization of the virtual tools for the proposed applications, which will run and will fulfill the set objectives.	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	40%

Laboratory reports and	
tests	
The purpose of each	
laboratory work is a	
report that includes the	
results obtained during	
the work. All of them are	
the laboratory notebook	
that is taught at the end	
of the semester and	
evaluated.	
30%	

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: - Development of skills regarding: using the basic programming elements of LabVIEW, knowing how to use and the structure of a data acquisition equipment based on personal computer and data acquisition device for the PCI bus;

- Ability to develop small application programs. The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control Systems Engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2 444 1 544 54 54 54 54 54 54 54 54 54 54 54 54							
2.1 Name of the subject		Numerical Methods					
2.2 Holder of the subject			Lecturer PhD eng. Novac Cornelia Mihaela				
2.3 Holder of the academic		Lectu	Lecturer PhD eng. Novac Cornelia Mihaela				
seminar/laboratory/project			-				
2.4 Year of study	2	2.5	3	2.6 Type of the	Vp -	2.7 Subject	DF
		Semester		evaluation	Continuous	regime	
					Assessment		

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28
		course		seminar/laboratory/project	
Distribution of time					44hour
S					S
Study using the manual, course support, bibliography and handwritten notes					16
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					12
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				12	
Tutorials					
Examinations				4	
Other activities.					

3.7 Total of hours for	44
individual study 3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) -Computer skills, linear algebra and mathematical analysis
4.2 related to skills	-

-	· · · · · · · · · · · · · · · · · · ·	
	5.1. for the development of	- The course room has to be provided with a video-projector
	the course	- The course can be carried out face to face or online

5.2.for the development of		- Personal computers with dedicated software programs (Matlab);		
the academic		- Students presence to all laboratory hours is compulsory		
semina	ary/laboratory/project	- The laboratory hours can be carried out face to face or online		
6. Spec	cific skills acquired			
Professional skills	chemical, electrical and ele	nathematics, physics, measurement, technical graphics, mechanical engineering, ectronic engineering in control systems engineering. Ental concepts of computer science, information technology and communications.		
Transversal skills				

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

· <u>· · · · · · · · · · · · · · · · · · </u>	or the discipline (resulting from the grid of the specific competences declared)
7.1 The	■ The discipline "Numerical methods" aims to familiarize students with the
general	features of the basic principles of numerical methods; the practical interpretation
objective of	of the formulas from the methods presented with the help of a computer system
the subject	and the realization of some computer programs with applications in the field of
	Systems Engineering, written in the Matlab programming language.
7.2 Specific	After completing the discipline "Numerical methods", students acquire the following
objectives	skills:
	 Understanding the content and essence of laboratory work;
	 Application of numerical problems in the field of systems engineering
	 Using the Matlab programming language for numerical calculation in the field of
	systems engineering; Solving with the help of a calculation system the more
	complex engineering problems, for which the analytical solutions do not exist, or
	are unsatisfactory.
	 Acquiring the ability to use what they have learned in this discipline in the case
	of a rigorous and abstract approach to practical problems that may arise in
	further research (master's, doctorate).

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Matlab programming fundamentals	Interactive lecture + video projector / Online	2
2. Introduction in Matlab programming	Interactive lecture + video projector / Online	4
3. Errors in numerical calculation	Interactive lecture + video projector / Online	2
4. Numerical methods to solve algebric linear systems equations. Exact methods.	Interactive lecture + video projector / Online	2
5. Numerical methods to solve algebric linear systems equations. Iterative methods.	Interactive lecture + video projector / Online	2
6. Interpolation.	Interactive lecture + video projector / Online	4
7. Functions approximation	Interactive lecture +	2

	video projector / Online	
8. Numerical methods to solve nonlinear equations.	Interactive lecture + video projector / Online	2
9. Numerical derivation	Interactive lecture + video projector / Online	2
10. Numerical integration	Interactive lecture + video projector / Online	4
11. Numerical methods to solve differential equations	Interactive lecture + video projector / Online	2

Bibliography

- 1. Mihaela Novac-" Metode numerice", Editura Universității din Oradea, 2005.
- 2. Mihaela Novac Metode numerice utilizând MatLAB : pentru ingineri- Editura Universității din Oradea, 2014.
- 3. Mihaela Novac "Metode numerice îndrumător de laborator", Editura Universității din Oradea, 2012.
- 4. M. Ghinea, V. Firețeanu, "Matlab calculul numeric-grafică-aplicații.", Editura Teora, 1997.
- 5. I.A Viorel, D. M. Ivan "Metode numerice cu aplicații în ingineria electrică", Editura Universității din Oradea, 2000.
- 6. Rusu, I-"Metode numerice în electronică", Editura Tehnică București, 1997
- 7. Mihaela Novac-" Metode numerice utilizând Matlab pentru ingineri", Editura Universității din Oradea, 2014

8.2 Laboratory	Teaching methods	No. of hours/
6.2 Laboratory	reaching methods	Observations
Using the Matlab programming environment	Application programs	2
1. Osing the Matiao programming environment	using Matlab	2
2. Build function files in Matlab	Application programs	2
2. Build function files in Wathau	using Matlab	2
3. Using the Matlab graphics environment. Building 2D and	Application programs	2
3D graphics.	using Matlab	_
4. Programs for solving algebric linear systems equations.	Application programs	4
Exact methods.	using Matlab	
5. Programs for solving algebric linear systems equations.	Application programs	2
Iterative methods	using Matlab	
6. Matlab programs for polynomial interpolation	Application programs	2
	using Matlab	
7. Functions approximation. Matlab programs for linear	Application programs	4
regression and polynomial regression.	using Matlab	
8. Matlab programs for solving nonlinear equations	Application programs	2
	using Matlab	
9. Matlab programs for solving numerical derivation	Application programs	2
	using Matlab	
10. Matlab programs for solving numerical integration	Application programs	2
	using Matlab	
11. Matlab programs for solving differential equations	Application programs	2
	using Matlab	
12. Evaluation of laboratory activity.		2

Bibliography

- 1. Mihaela Novac-" Metode numerice", Editura Universității din Oradea, 2005.
- 2. Mihaela Novac, O. Novac "Metode numerice utilizând Matlab", Editura Universității din Oradea, 2003.
- 3. Mihaela Novac "Metode numerice îndrumător de laborator", Editura Universității din Oradea, 2012.

- 4. M. Ghinea, V. Firețeanu, "Matlab calculul numeric-grafică-aplicații.", Editura Teora, 1997.
- 5. I.A Viorel,D. M. Ivan "Metode numerice cu aplicații în ingineria electrică", Editura Universității din Oradea, 2000.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields..

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	-Knowledge and proper use of notions specific to numerical calculation;	Continuous Assessment, practical computer applications / Online assessment (Online questionnaire)	70 %
10.6 Laboratory	-Realization of all laboratory applications	Practical application	30%
10.8 Minimum performa	nce standard:		

Completion date:

29.08.2022

Date of endorsement in the department:

1.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Automatics and Applied Informatics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Con	tro	ol systems inform	atics		
2.2 Holder of the subject			Asso	oc.	. prof. GERGELY	Eugen-Ioan		
2.3 Holder of the academic seminar/laboratory/project		Lect	tur	er KOVENDI Zo	ltan / Assoc. pi	of. BARABAS Ti	beriu	
2.4 Year of study 4 2.5 Semester		8		2.6 Type of the evaluation	Examination	2.7 Subject regime	Specialized Discipline	

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	5	of which: 3.2	3	3.3 academic	-/1/1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	70	Of which: 3.5	42	3.6 academic	-/14/14
		course		seminar/laboratory/project	
Distribution of time					60 hours
Study using the manual, course support, bibliography and handwritten notes				28	
Supplementary documentation using the library, on field-related electronic platforms and in field-				14	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays 14				14	
Tutorials				2	
Examinations				2	
Other activities.					

3.7 Total of hours for	60
individual study	
3.9 Total of hours per	130
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- The laboratory/project facility has to be provided with the necessary
the laboratory/project	equipments
	- Students presence to all laboratory/project hours is compulsory
	- Students must have summarized the current laboratory work

		- Maximum 2 laboratory works (30%) can be recovered during the	
		semester	
		- A participation below 70% at the laboratory works / project leads to the restoration of the subject	
		- Each student will receive a project specification	
		- Students have to accomodate with the rhythm of elaboration and writing	
		of the project	
		- Students have to provide and to defend their project	
		- The laboratory / project hours can be carried out face to face or online	
6. Spec	cific skills acquired		
Professional skills	C4. Design, implementation, testing, use and maintenance of general-purpose systems and dedicated equipment, included computer networks for automation and applied informatics applications. C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems.		
Transversal skills	transfer), product certificate own strategies for rigorous CT2. Identification of role tasks, applying techniques	ontext of legislative compliance, of intellectual property rights (including technology tion methodology, principles, norms and values of professional ethics code in their s, efficient and accountable work. Is and responsibilities in a plurispecialized team, making decisions and assigning of effective relationships and team working. Ortunities and efficient use of resources and learning techniques for their own	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discipline (resulting from the grid of the specific competences declared)		
7.1 The	 Students are introduced to the concepts needed to design numerical control systems 	
general	(PLC and CNC). For this purpose, aspects related to interface with analog signals,	
objective of	communications, human-machine interface, operational safety, construction notes,	
the subject	maintenance and troubleshooting are addressed. The laboratory is focused on the CP	
	20 UO machining center. The project will design an NC program for machining a part	
	(individual theme) on a CNC router type 3018PRO	
7.2 Specific	 Creating the ability to analyze, design, implement and troubleshoot process control 	
objectives	systems.	
	 Acquiring the ability to interconnect different control equipments in industrial 	
	networks.	
	 Gaining the ability to design human-machine interfaces. 	

8. Contents*

9.1 Course	Tanahina	No. of hours/	
8.1 Course	Teaching		
	methods	Observations	
	face to face or		
	online		
1. Analog signals, closed loop control and intelligent modules	interactive	9 hours	
	presentation		
2. Distributed systems	interactive	9 hours	
	presentation		
3. Human-machine interface	interactive	6 hours	
	presentation		
4. Practical aspects	interactive	18 hours	
	presentation		
Bibliography			
1. E. Gergely, Informatica sistemelor de conducere, Note de curs, forn	nat electronic, 2018		
2. E. Gergely, Helga Silaghi, V. Spoială, L. Coroiu, Z. Nagy, Automate programabile. Operare,			
programare, aplicații, Editura Universității din Oradea, Oradea, ISBN 978-973-759-940-7, 2009.			
3. L. M. Thompson, Industrial Data Communications, 4th Edition, ISA, 2007.			
8.2 Laboratory	Teaching	No. of hours/	
	methods	Observations	
	face to face or		

	online	
1. Labor protection. Presentation of laboratory works.	Laboratory work	2 hours
The Europe protection is resonation of most acord works.	summary and	2 nours
	practical	
	demonstrations	
	using specific	
	equipments	
2. Study of the CP20UO processing center.	Laboratory work	2 hours
2. Study of the Ci 2000 processing center.	summary and	2 nours
	practical	
	demonstrations	
	using specific	
	equipments	
3. The CNC 600 equipment. Conventional operation.	Laboratory work	2 hours
3. The Cive 600 equipment. Conventional operation.	_	2 110418
	,	
	practical demonstrations	
	using specific	
A TIL CNG COO ' A NI ' 1 A 1	equipments	2.1
4. The CNC 600 equipment. Numerical control operation.	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
5. Programming contour processing using the tool compensation functions	Laboratory work	2 hours
of the CNC 600 equipment.	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
6. Functions and structure of the CNC 600-3 system.	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
7. Completion of the laboratories situation	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
Bibliography		
1. Nagy Z., ș.a., Informatica sistemelor de conducere, îndrumător de laborator		
2. R. Zurawski, Integration Technologies for Industrial Automated Systems, C		
8.3 Project	Teaching	No. of hours/
	methods	Observations
1. Presentation of the topic and explanations on how to carry out and prepare	Interactive	2 hours
the project.	presentation,	
	examples,	
	individual work	
2. The drawing of the piece with the representation of the tool trajectory.	Interactive	2 hours
j	presentation,	
	examples,	
	individual work	
3. Establishing the commands related to the trajectory.	Interactive	2 hours
	presentation,	- 110 4110
	examples,	
	individual work	
4. Calculation of the coordinates of the characteristic points.	Interactive	2 hours
in Calculation of the Coordinates of the Characteristic points.	presentation,	2 1100115
	Probeimmon,	I

	examples, individual work	
5. Establishment of functions G, F, S, T and M.	Interactive presentation, examples, individual work	4 hours
6. Realization and testing of the NC program.	Interactive presentation, examples, individual work	2 hours
7. Project delivering and defending.	Interactive presentation, examples, individual work	2 hours

Bibliography

- 1. T. Barabas, Programarea maşinilor-unelte cu comandă numerică. Îndrumător de proiect, Universitatea din Oradea, 2020 (în format electronic).
- 2. T. Vesselenyi, T. Barabas, Robot and CNC programming, Editura Universității din Debrecen (HU), ISBN 978-963-473-522-9, 2012.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be made face to face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard -For mark 10: -thorough knowledge regarding analog signals, closed loop control and intelligent modules -thorough knowledge regarding distributed systems -thorough knowledge regarding humanmachine interfaces -thorough knowledge regarding humanmachine interfaces	Written examination	60%
10.6 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard	Knowledge assessment test	20%

	-For mark 10: - thorough knowledge regarding the CP20UO processing center - thorough knowledge regarding the structure and programming of the CNC 600-3 system		
10.7 Project	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard -For mark 10: - thorough knowledge regarding the commands for establishing the tool trajectory - thorough knowledge regarding the realization and testing of the NC program	Project completion and defending	20%

10.8 Minimum performance standard:

Course:

- knowledge regarding analog signals, closed loop control and intelligent modules
- knowledge regarding distributed systems
- knowledge regarding human-machine interfaces

Laboratory:

- knowledge regarding the CP20UO processing center
- knowledge regarding the structure and programming of the CNC 600-3 system

Project:

- knowledge regarding the commands for establishing the tool trajectory
- knowledge regarding the realization of the NC program

Completion date: 01.09.2022

Date of endorsement in the department:

12.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022