1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject Applied Informatics I							
2.2 Holder of the subject prof.PhD.Hathazi Francisc – Ioan							
2.3 Holder of the academic seminar/laboratory/project / PhD student eng.Covaciu Mihaela /							
2.4 Year of study I 2.5 Semes		ter	Ι	2.6 Type of the evaluation	Ex.	2.7 Subject regime	Fundamental Discipline (DF)

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic		-/2	/ -
		course		seminar/laboratory/projection	ct		
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic		-/2	8/-
		course		seminar/laboratory/projection	ct		
Distribution of time						rs	
	- 1	11 1 1			- 1	4	

Distribution of time	nours
Study using the manual, course support, bibliography and handwritten notes	14
Supplementary documentation using the library, on field-related electronic platforms and in field-	8
related places	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays	10
Tutorials	4
Examinations	8
Other activities.	

3.7 Total of hours for individual study	44
3.9 Total of hours per semester	100
3 10 Number of credits	4

4. Pre-requisites (where applicable)

it i i e quisites (where applied	me1 -)
4.1 related to the curriculum	-
4.2 related to skills	Minimum knowledge of hardware and software

5. Conditions (where applicable)

5.1. for the development of	The course can be taken face-to-face or online. Laptop, video projector,
the course	magnetic board, free speech.
5.2.for the development of	-/ The laboratory can be carried out face to face or online. Smart board,
the academic	computer network with workstation for each student, access to software
seminary/laboratory/project	that is studied in the course, network access to the internet / -
6. Specific skills acquired	

Professional skills	•	C2. Operating with fundamental concepts in computer science and information technology				
	•	CT1 – Identify the objectives to be achieved, the available resources, the conditions for their				
IIs		completion, the working stages, the working times, the deadlines and the related risks;				
skills	•	CT2 - Identify roles and responsibilities in a multidisciplinary team and apply effective				
sal		relationship techniques and teamwork;				
vers	•	CT3 – Efficient use of information sources and resources of communication and assisted				
relationship techniques and teamwork; CT3 – Efficient use of information sources and resources of communication professional training (Internet portals, specialized software applications, data courses, etc.) both in Romanian and in a language of international circulation						
Tr		courses, etc.) both in Romanian and in a language of international circulation.				

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discip	(1	obarting	mom the gr	14 01 6	ne specific com	petene	es acquirea)		
7.1 The general objective of	•	The	course	is	addressed	to	students	from	the
the subject		ELEC	CTROMEC	HAN	IICS specializa	ation,	trying to far	miliarize	them
		theore	etically but	talso	practically w	ith a s	series of kno	owledge	about
		applied informatics. Given the degree of penetration of computer							
					aspects of so		•		•
			~		*				
		•	•		lls, computer u		• •		
			• •		ents with info	ormatio	on on acqui	ring the	maın
		know	ledge in the	e field	1.				
7.2 Specific objectives	•	The lab is designed to provide future engineers with practical							
		comp	uter skills.	The c	content of the 1	aborat	tories presen	ted is bas	sed on
		the need to deepen and practical explanation of the problems							
		presented in the course. Students have the opportunity to identify							
		specif	ic issues	discu	ssed during t	he co	urse, famili	arization	with
		mode	rn means c	of wor	rk. They will u	ındersi	tand the com	plexity of	of this
		discip	line. Know	vledg	e is useful in	devel	oping skills	in addre	essing
		the sp	ecific issue	es fac	ing a specialist	t in thi	s field.		

8. Contents*

8.1 Course	Teaching methods	No. of hours/
	-	Observations
1. Introductory course.	Laptop, video projector,	2
	IQ Board, free speech	
2. Computer systems architecture. Knowledge of the main	Laptop, video projector,	3
parts of the personal computer: central processing unit	IQ Board, free speech	
(CPU), hard disk, input / output devices, memory types, data		
carriers. Understanding the term peripheral mechanisms.		
3. Operating systems.	Laptop, video projector,	3
	IQ Board, free speech	
4. Basic hardware, software and IT concepts. Short history of	Laptop, video projector,	2
programming languages.	IQ Board, free speech	
5. Advanced editing techniques.	Laptop, video projector,	3
	IQ Board, free speech	
6. Spreadsheet programs.	Laptop, video projector,	3
	IQ Board, free speech	
7. Ethical and legal aspects related to informatics,	Laptop, video projector,	2
professional ethics, analytical tools (related to ethics).	IQ Board, free speech	
8. Aspects related to intellectual property protection:	Laptop, video projector,	3

infringement, protection.	IQ Board, free speech	
9. Privacy issues - private space (internet).	Laptop, video projector,	2
	IQ Board, free speech	
10. Case studies of violation of ethical norms and protection	Laptop, video projector,	2
of one's work.	IQ Board, free speech	
11. Computer viruses. Understand the term computer virus.	Laptop, video projector,	3
Understanding and knowing anti-virus measures.	IQ Board, free speech	

Bibliography

- 1. Hathazi Francisc Ioan Notițe de Curs în curs de apariție;
- 2. Francisc Ioan Hathazi, Utilizarea calculatoarelor, Editura Universității din Oradea, ISBN 973-759-089-9, 978-973-759-089-3, 2006, pp.253;
- 3. FRENTIU, M., PARV, B.: Elaborarea programelor: metode si tehnici moderne, ProMedia, Cluj-Napoca, 1994;
- 4. GHEZZI, C., JAZAYERI, M.: Programming Language Concepts, John Wiley, 1972;
- 5. HOROWITZ, E.: Fundamentals of Programming Languages, Springer, 1973;
- 6. MACLENNAN, B.J.: Principles of Programming Languages: Design, Evaluation and Implementation, Holt, Rinehart and Winston, 1973;
- 7. PARV, B., VANCEA, A.: Fundamentele limbajelor de programare, Fascicolele 1-2, Lito Univ. "Babes-Bolyai", 1992;
- 8. PRATT, T.W.: Programming Languages: Design and Implementation, Prentice Hall, 1975;
- 9. SHAMMAS, N.: Object Oriented Programming with Turbo Pascal, Prentice-Hall, 1990;
- 10. VOSS, G.: Object-Oriented Programming: An Introduction, Osborne McGraw-Hill, 1991;
- 11. PARV, B., VANCEA, A.: Fundamentele limbajelor de programare, Ed.Microinformatica, 1996;

9.2 Laboratory	Tanahina mathada	No. of hours/
8.2 Laboratory	Teaching methods	
		Observations
1. Assessment of digital skills.	Free speech, use of	2
	computer network from	
	the laboratory equipment	
2. The structure of computer systems. Assembly and	Free speech, use of	4
troubleshooting. Operating systems. Installation. Settings.	computer network from	
Case studies.	the laboratory equipment	
3. Advanced editing techniques in MS Word.	Free speech, use of	5
	computer network from	
	the laboratory equipment	
4. Advanced techniques in the MS Excel spreadsheet	Free speech, use of	5
program	computer network from	
	the laboratory equipment	
5. Making professional presentations with MS Power Point	Free speech, use of	5
	computer network from	
	the laboratory equipment	
6. Ethical and legal issues related to informatics.	Free speech, use of	3
	computer network from	
	the laboratory equipment	
7. Protection of intellectual property	Free speech, use of	2
	computer network from	
	the laboratory equipment	
8. Viruses. Case studies.	Free speech, use of	2
	computer network from	
	the laboratory equipment	

Bibliography

- 1. 1. Hathazi Francisc Ioan Notițe de Laborator în curs de apariție;
- 2. Francisc Ioan Hathazi, Utilizarea calculatoarelor, Editura Universității din Oradea, ISBN 973-759-089-9, 978-973-759-089-3, 2006, pp.253
- 3. FRENTIU, M., PARV, B.: Elaborarea programelor: metode si tehnici moderne, ProMedia, Cluj-Napoca, 1994;
- 4. GHEZZI, C., JAZAYERI, M.: Programming Language Concepts, John Wiley, 1972;

- 5. HOROWITZ, E.: Fundamentals of Programming Languages, Springer, 1973;
- 6. MACLENNAN, B.J.: Principles of Programming Languages: Design, Evaluation and Implementation, Holt, Rinehart and Winston, 1973;
- 7. PARV, B., VANCEA, A.: Fundamentele limbajelor de programare, Fascicolele 1-2, Lito Univ. "Babes-Bolyai", 1992;
- 8. PRATT, T.W.: Programming Languages: Design and Implementation, Prentice Hall, 1975;
- 9. SHAMMAS, N.: Object Oriented Programming with Turbo Pascal, Prentice-Hall, 1990;
- 10. VOSS, G.: Object-Oriented Programming: An Introduction, Osborne McGraw-Hill, 1991;
- 11. PARV, B., VANCEA, A.: Fundamentele limbajelor de programare, Ed.Microinformatica, 1996;

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is adapted and satisfies the requirements imposed on the labor market, being agreed by the social partners, professional associations and employers in the field related to the license program. The content of the discipline is found in the curriculum of the Electromechanics specialization and from other university centers in Romania that have accredited this specialization, so the knowledge of the basic notions is a stringent requirement of the employers in the field. For a better adaptation to the requirements of the labor market of the content of the discipline, meetings were held both with representatives of the business environment and with teachers from pre-university education.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Oral examination	The evaluation can be	75 %
		done face-to-face or	
		online. Oral examination	
		of students	
10.6 Laboratory	Final evaluation test and	The evaluation can be	25 %
	free presentation of the	done face-to-face or	
	report in ppt format.	online. Oral examination	
		of students	

10.8 Minimum performance standard:

• Carrying out the works under the coordination of a teacher, in order to solve specific problems in the IT field with the correct evaluation of the workload, resources available for the necessary time to complete the risks, under the conditions of application of occupational safety and health norms.

Completion date:

29.08.2022

Date of endorsement in the

department:

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	DEPARTMENT OF ELECTRICAL ENGINEERING
1.4 Field of study	ELECTRICAL ENGINEERING
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics
	Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject	*	TECHNOLOGICAL METHODS AND PROCESSES					
2.2 Holder of the subject				nf.dr	ing. BANDICI LIVIA	1		
2.3 Holder of the academic seminar / laboratory / project			Şef	.lucr	dr.ing. GAL TEOFIL	- La	boratory	
seminar / laboratory / project								
2.4 Year of study	I	2.5 Semeste	er	1	2.6 Type of the	VP	2.7 Subject regime	DD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	42	of which: 3.2	2	3.3 academic	1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	2	3.6 academic	1
		course		seminar/laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					10
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					7
Tutorials				3	
Examinations			3		
Other activities.			-		

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4. 11c-requisites (where applicable)					
4.1 related to the	(Conditions)				
curriculum					
4.2 related to skills					

5. Conditions (where applicable)

	- /
5.1. for the development of	Video projector, computer;
the course	- The course can be held face to face or online;
	- Attendance: at least 50% of the courses.
5.2.for the development of	- The laboratory can be held face to face or online;
the academic	- The equipment related to the laboratory class;
seminary/laboratory/project	- Preparation of the report (synthesis material);

		 Carrying out all laboratory works; The recovery of one missed laboratory is allowed; Attendance at laboratory classes: less than 70% leads to the restoration of the discipline.
6. Spec	cific skills acquired	
Tet .	C4. Using measurement	techniques for electrical and non-electrical quantities and data acquisition
ons	systems in electromechan	· ·
SSi	C5. Automation of electron	•
efe Ils	C6. Operating, maintena	nce, service, system integration activities
Professional skills		

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective	 Students acquire the concepts regarding technological methods and 				
of the subject	procedures, methods of analysis and synthesis of their structure;				
3	 Applying general and specialized technical knowledge to solve the logistic 				
	problems specific to the field of electrical engineering				
7.2 Specific objectives	 Design and use of schemes, structural and functional diagrams, graphic 				
	representations and technical documents specific to the field of electrical				
	ngineering				

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Basic concepts of technological methods and processes	Projector.	2
1.1. Production process	Intercalated	
1.2. Technological process	student	
· ·	contributions are	
	requested on	
	subject-specific	
	topics. Some	
	courses take	
	place by teaching	
	subjects and	
	student debates.	
1.3. Technological flow	Idem	2
1.4. Quality technical control		
1.5. Choosing the optimal process version		
1.6. Elements of technical norming in the technological process		
1.7. Precision of part and product processing. Tolerances and adjustments	Idem	2
1.8. Dimensions, deviations and tolerances		
2. Material properties	Idem	2
2.1. Properties of materials and tests		
2.2. Physical properties		
2.3. Electrical properties		
2.4. Magnetic properties		
2.5. Mechanical properties and tests		
2.6. Chemical properties	Idem	2
2.7. Electrical properties of insulating materials		
2.8. Physical-chemical properties of insulating materials		
2.9. Aluminium properties		
2.10. Copper properties		
3. Materials used in industry	Idem	2
3.1. Materials used in machine building		
3.2. Metals and alloys used in electrical engineering		
3.3. Electrical insulating materials used in electrical engineering		
3.3.1. Gaseous electro-insulating materials		
3.3.2. Liquid electro-insulating materials		
3.3.3. Solid organic insulating materials	Idem	2
3.3.4. Solid inorganic insulating materials		
4. Methods and processes of cold machining	Idem	2

4.1. Methods and processes for splitting machining		
4.1.1. Turning		
4.1.2. Milling		
4.1.3. Drilling		
4.1.4. Planning	Idem	2
4.1.5.Polishing		
4.1.6.Rectification		
4.1.7. Other processing methods		
4.2. Methods and processes for processing materials by cutting and cold		
plastic deformation		
4.2.1. Cutting		
4.2.2. Shaping		
4.2.3. Continuous deformation		
4.2.4. Bending	Idem	2
4.2.5. Drawing		
4.2.6. Special processing of sheets		
4.3. Unconventional technologies		
4.3.1. Electrical discharge machining processing		
5. Innovative technologies in material processing	Idem	2
5.1. Plasma cutting technology		
5.2 Friction rotation with rotating element		
5.3. 2D and 3D Laser Testing		
5.4. Non-destructive processing of materials		
5.5. Laser processing by shock		
5.6. Innovative pressing processing		
5.7. Method of heating ingots using superconducting magnets		
5.8. Nanotechnology	Idem	2
5.9. Water jet cutting		
5.10. Pipe welding technology in a hyperbaric environment		
5.11. Bionanotechnology		
5.12. Technology of material processing by solidification with phase change		
surface control		
5.13. Graphene		
6. Corrosion and corrosion protection of metals and alloys	Idem	2
6.1 Corrosion of metals		
6.1.2. Chemical corrosion		
6.1.3. Electrochemical corrosion		
6.2. Corrosion protection of metals and alloys	Idem	2
Ribliography		

Bibliography

- 1) Şt. Nagy, Livia Bandici "Metode și procedee tehnologice", Editura Universității din Oradea, 2017, ISBN 978-606-
- 2) V. Petre "Tehnologie Electromecanica Îndrumar de laborator", UPB, 2001.
- 3) F. Anghel, M.O. Popescu "Tehnologii Electromecanice", UPB, 2001.
- 4) F. Anghel, I. Bestea "Tehnologii Electromecanice Aplicații practice", UPB, 2003.
- 5) T. Tudorache "Metode si procedee tehnologice", UPB, 2003.
- 6) L. Balteş "Ştiinţa si ingineria materialelor", Reprografia Universității "Transilvania" Braşov, 2004. 7) G. Oprea "Chimie fizică. Teorie și aplicații", Editura Risoprint, Cluj Napoca, 2005, ISBN 973-656-909-8.
- 8) D. Hoble, Livia Bandici, Șt. Nagy "Sisteme performante de procesare electrotermică a materialelor", Editura Universității din Oradea, 2012, (ISBN 978-606-10-0767-7).
- 9) Livia Bandici, D. Hoble, Șt. Nagy "Tehnologii inovative în procesarea materialelor", Editura Universității din Oradea, 2011, (ISBN 978-606-10-0472-0).
- 10) Livia Bandici, Dorel Hoble, Stefan Nagy "Tehnologii inovative în procesarea materialelor". Editura Universității din Oradea, 2011, pag. 224, ISBN 978-606-10-0472-0.

, , , , , , , , , , , , , , , , , , , ,		
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the paper, instructions on the work safety rules, processing	- Presentation of	2
of the experimental data	the paper	
	(synthesis	
	material);	
	- Test on the	
	theoretical	
	knowledge	

	aquired during the laboratory; - Interpretation of	
	the results.	_
2. Standardization in the machine industry and in electrical engineering	Idem	2
3. Metals and alloys used in the electrotechnical industry	Idem	2
4. Cold treatment technologies	Idem	2
5 Heat treatment technologies	Idem	2
6. The use of MACH4	Idem	2
7. Closing the laboratory situation.	- presenting and	2
	handing out the	
	laboratory	
	papers;	
	- the recovery of	
	one missed	
	laboratory is	
	allowed.	

Bibliography

- 1) Livia Bandici, Ștefan Nagy Metode și procedee tehnologice. Lucrări practice de laborator. Editura Universității din Oradea, 2018, ISBN 978-606-10-1958-8.
- 2) V. Petre "Tehnologie Electromecanica Îndrumar de laborator", UPB, 2001.
- 3) F. Anghel, M.O. Popescu "Tehnologii Electromecanice", UPB, 2001.
- 4) F. Anghel, I. Bestea "Tehnologii Electromecanice Aplicații practice", UPB, 2003.
- 5) T. Tudorache "Metode si procedee tehnologice", UPB, 2003.
- 6) L. Balteş "*Ştiinţa si ingineria materialelor*", Reprografia Universității "Transilvania"Brașov, 2004. 7) G. Oprea "*Chimie fizică. Teorie și aplicații*", Editura Risoprint, Cluj Napoca, 2005, ISBN 973-656-909-8.
- 8) Șt. Nagy, Livia Bandici "Metode și procedee tehnologice", Editura Universității din Oradea, [ISBN 978-606-10-1888-81, 2017.
- 9) Hütte "Manualul inginerulului. Fundamente", Editura Tehnică, București, 1989.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Minimum required	The evaluation can be	50 % from 0,5 VP _F ;
	conditions for passing	done face to face or	
	the exam (mark 5): in	online.	
	accordance with the		
	minimum performance		
	standard		
10.5 Laboratory	Minimum required		
	conditions for promotion		
	(grade 5): in accordance		
	with the minimum		
	performance standard		

Note components: Final Periodic Verification (VPF), Laboratory (LF)

Grade calculation formula: VP Grade = 0.5VPF + 0.5LF; LF = 0.450L + 0.05R; VPF = (VPI + VPII) / 2;

10.6 Minimum performance standard:

Carrying out works under coordination, in order to solve some problems specific to the field, with the correct evaluation of the workload, the available resources, the necessary completion time and the risks, in conditions of application of the norms of safety and health at work;

Adequate use of basic knowledge of technological methods and processes used in the machine building and electrical engineering industries.

Completion date: 29.08.2022

Date of endorsement in the department: 01.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electrical engineering/ Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject	Modern Languages – English (1)				
2.2 Holder of the subject	Lecturer PhD. Abrudan Caciora simona Veronica				
2.3 Holder of the academic	3 Holder of the academic				
laboratory/project					
2.4 Year of study I 2.5 Semes	ter 1	2.6 Type of the	PE	2.7 Subject regime	CD
		evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2		3.3 academic seminar	1
		course		/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5		3.6 academic seminar/	14
		course		laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes				36	
Supplementary documentation using the library, on field-related electronic platforms and in					
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			12		
Tutorials			18		
Examinations					4
Other activities.					

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

10 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to approvers)
4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	
the course	
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the academic	- The seminar can be carried out face to face or online
laboratory/project	
6. Specific skills acquired	

Professional skills	
Transversal skills	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	The cominer sime to be for the students who do not have English as main
	The seminar aims to be, for the students who do not have English as main
general	subject, a means of improving the English knowledge they had acquired in high
objective of	school, in order to reach the level of language competence that would alow them
the subject	to understand and produce accurate academic and scientific texts in English, and
	understand written or verbal texts on topics related to the field of engineering in
	general and the specialization they have chosen, in particular. During the
	seminar, students are given the opportunity to produce written texts or to express
	themselves verbally, in English. In order to achieve these goals, the textbooks
	elaborated by the foreign languages team of the Department of Automated
	Systems Engineering and Management are used, as well as specialized books,
	published by well-known international publishing houses.
7.2 Specific	Acquiring field-related vocabulary in English and the completion of documents
objectives	that are specific to the chosen field of study

8. Contents*

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Introductory seminar. Test for the evaluation of students'level of English language skills.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter Drawings in engineering: Drawing types and scales Reading. Vocabulary and conversation exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3: Types of views used in engineering drawings. Vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Design development: the initial design phase. Collaborative development of engineering projects. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 5. The degrees of comparison for adjectives and adverbs (revision exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 6: Engineering Design. Technical Drawing in Engineering. Types of Views Used in Engineering Drawing. Listening and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Design objectives and design calculations. Vocabulary and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: Expressing dimensions of circles (key dimensions of circles, expressing the dimensions of pipes and ducts). Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: Dimensional accuracy. Discussing the concepts of precision and tolerance in engineering. Vocabulary and speaking exercises	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Expressing numbers and calculations. Decimals and fractions. Addition, subtraction, multiplication and division. (Listening and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: Expressing area, size and mass. Referring to weight, mass, volume and density (Reading and exercises)	Free exposure, with the presentation of the course with video projector, on the board or	1h

	online	
Chapter 12: Measurable parameters. Defining the concepts of supply, demand, capacity, input, output and efficiency in relation to the engineering domain. (Reading and conversation exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: 3D component features (referring to 3D forms of edges and joints and the 3D forms of fasteners) Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: Revision of the concepts relating to the engineering domain discussed during the semester.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universității "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, *English for Computer Science Students*, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Bențea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, English for ICT Studies in Higher Education Studies, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	

10.4 Seminar	Minimum required	Written exam	100 %
	conditions for passing	Students rare required to	
	the exam (mark 5): in	solve exercises, meant at	
	accordance with the	testing the knwledge	
	minimum performance	they acquired during the	
	standard it is necessary	semester	
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10: thorough		
	knowledge of all subjects		
	is required		

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context

Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

Signature of the seminar holder:
AbrudanCaciora Simona Veronica
e-mail: veronicaabrudan@yahoo.com

Completion date:

29.08.2022

Head of the Department Helga Maria Silaghi e-mail: hsilaghi@uoradea.ro

Date of endorsement in the department:

1.09.2022

Signature of the Head of teh Department Prof. Habil.Phd Francisc Ioan Hathazi e-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board:

23.09.2022

Signature of the Dean
Prof Habil PhD Ioan Mircea Gordan
mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electrical engineering / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Mo	der	n Languages – Engl	lish (1	1I)	
2.2 Holder of the subject			Lecturer PhD. Abrudan Caciora simona Veronica					
2.3 Holder of the academic								
laboratory/project								
2.4 Year of study	I	2.5 Semeste	er	1I	2.6 Type of the	PE	2.7 Subject regime	CD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	of which: 3.2	3.3 academic seminar	1	
	course	/laboratory/project		
3.4 Total of hours from the curriculum	Of which: 3.5	3.6 academic seminar/	14	
	course	laboratory/project		
Distribution of time			50	
Study using the manual, course support, bibliography and handwritten notes				
Supplementary documentation using the library, on field-related electronic platforms and in				
field-related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				
Tutorials				
Examinations				
Other activities.				

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

10 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to approvers)
4.1 related to the	Basic knowledge of English
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	
the course	
5.2.for the development of	- Mandatory presence at 80% of the seminars;
the academic	- The seminar can be carried out face to face or online
laboratory/project	
6. Specific skills acquired	

Professional skills	
Transversal skills	CT3. Effective use of information sources and resources of communication and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

•	
7.1 The	The seminar aims to be, for the students who do not have English as main
general	subject, a means of improving the English knowledge they had acquired in high
objective of	school, in order to reach the level of language competence that would alow them
the subject	to understand and produce accurate academic and scientific texts in English, and
	understand written or verbal texts on topics related to the field of engineering in
	general and the specialization they have chosen, in particular. During the
	seminar, students are given the opportunity to produce written texts or to express
	themselves verbally, in English. In order to achieve these goals, the textbooks
	elaborated by the foreign languages team of the Department of Automated
	Systems Engineering and Management are used, as well as specialized books,
	published by well-known international publishing houses.
7.2 Specific	Acquiring field-related vocabulary in English and the completion of documents
objectives	that are specific to the chosen field of study

8. Contents*

8.2 Seminar	Teaching	No. of hours/
	methods	Observations
Chapter 1 Material types: Metals and non-metals. Elements, compounds and mixtures. Composite materials. Vocabulary and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter Polymers. Natural and synthetic polymers. Thermoplastics and thermosetting plastics. Reading. Vocabulary and conversation exercises. Revision of numerals.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 3: Material properties (I). Tensile strength and deformation. Elasticity and plasticity. Stages in elastic and plastic deformation. Vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

Chapter 4. Material properties (I). Hardness. Fatigue, fracture toughness and creep. Basic thermal properties. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 5. Interconnection: vocabulary relating to attaching and supporting and fitting together different parts, specific to the engineering domain. (revision exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 6: Mechanical fasteners (I). Bolts. Preload in bolted joints. Washers. Listening and speaking exercises. Revision: Countable and uncountable nouns.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 7: Mechanical fasteners (2). Screws. Screw anchors and rivets Vocabulary and speaking exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 8: Non-mechanical joints: welding, brazing, soldering, adhesives. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 9: Referring to types of force and deformation. The concept of failure in engineering Vocabulary and speaking exercises	Free exposure, with the presentation of the course with video projector, on the board or online	1 h
Chapter 10: Expressing numbers and calculations. Decimals and fractions. Addition, subtraction, multiplication and division. (Listening and vocabulary exercises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 11: Referring to the electrical supply. Direct current and alternating current. AC generation and supply. DC generation and use (Reading and exercises)	Free exposure, with the presentation of the course with video projector, on the board or	1h

	online	
Chapter 12: Referring to circuits and components. Simple circuits. Mains AC circuits and switchboards. Printed and integrated circuits. Electrica land electronic components. (Reading and conversation exrcises)	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 13: Referring to engines and motors. Types and functions of engines and motors. Reading and vocabulary exercises.	Free exposure, with the presentation of the course with video projector, on the board or online	1h
Chapter 14: Referring to energy and temperature. Forms of energy. Energy efficiency. Work and power.	Free exposure, with the presentation of the course with video projector, on the board or online	1h

References:

Abrudan Simona Veronica, Bandici Adina, *Technical English for Electrical Engineering*, Editura Universității "Lucian Blaga" din Sibiu, 2016.

Abrudan Simona Veronica, *English for Computer Science Students*, Editura Universitatii din Oradea, Oradea, 2009

Abrudan Simona Veronica, 'English Practice. A Practical Course in English for Intermediary Students', Editura Universitatii din Oradea, Oradea 2004

Abrudan Simona, Fazecas Eniko, Anton Anamaria, Bențea Violeta, *A Practical Course In English Science and Technology*, Editura Universitatii din Oradea, Oradea 2002

Beakdwood, L, A first Course in Technical English, Heinemann, 1978

Fitzgerald, Patrick, Marie McCullagh and Carol Tabor, English for ICT Studies in Higher Education Studies, Garnet Education, Reading, UK, 2011.

PPP- English for Science and Technology, Cavaliotti, Bucuresti, 1999

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Technical Engish requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	

10.4 Seminar	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough	Written exam Students rare required to solve exercises, meant at testing the knwledge they acquired during the semester	100 %
	them		
	knowledge of all subjects is required		

10.6 Minimum performance standard:

Seminary:

Capacity to use English in an appropriate way, depending on the context

Capacity to produce any of the documents, written in English, presented and discussed during the seminaries

Capacity to use grammatical structures accurately

Completion date: 29.08.2022

Date of endorsement in the department:

1.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject Equation			ons c	of mathematical physics	5			
2.2 Holder of the subject Conf.ur			niv. c	dr. ing. GRAVA ADRIANA	4			
2.3 Holder of the academic seminar/laboratory/project			Conf.u	niv. c	dr. ing. GRAVA ADRIANA	\ /-/-		
2.4 Year of study	I	2.5 Sem	ester	2	2.6 Type of the evaluation	EX	2.7 Subject regime	DF

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	-/2/-
		course		seminar/laboratory/proje	
				ct	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	-/28 /-
		course		seminar/laboratory/proje	
				ct	
Distribution of time					69
Study using the manual, course support, bibliography and handwritten notes					15
Supplementary documentation using the library, on field-related electronic platforms and in			18		
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			18		
Tutorials					4
Examinations				4	
Other activities.				10	

3.7 Total of hours for individual study	69
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 Related to the	Special mathematics, mathematical analysis
curriculum	
4.2 Related to skills	

5. Conditions (where applicable)

5.1. for the development of the	The course could be physically or online
course	
5.2.for the development of the	Seminary could be physically or online
academic	
seminary/laboratory/project	

6. Spec	cific skills acquired
Professional skills	C1. Proper implementation of specific fundamental knowledge of mathematics, physics, chemistry, in the field of electrical engineering - C2. Use of fundamental concepts of computer science and information technology - C3. Use of fundamental knowledge of electrotechnics - C4. Design of electrical systems and their components
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discipline (1686	itting from the grid of the specific competences acquired)
7.1 The general objective of the	
subject	The student after this course acquires mathematical skills in solving problems of electric and electromagnetic field, the use of signals in time and frequency.
7.2 Specific objectives	After completing the course, the student must know how to use and apply mathematical formulas, within the studied chapters such as: symbolic analysis, partial differential equations, time and frequency analysis required for electrical engineering applications in the following disciplines to be performed during the 4 years of study.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Scalar fields. Vector fields.	Video projector, presentation, discussion or online	2h
2. Analysis of electrical signals over time. Applications with the 20 SIM simulation program.	Video projector, presentation, discussion or online	2h
3. Use of functions for modeling complex systems.	Video projector, presentation, discussion or online	2h
4. Methods of modifying equations. Applications with the 20 SIM simulation program.	Video projector, presentation, discussion or online	2h

5. Power and energy variables. Input sizes		2h
6. Analysis of the system of equations for an electrical circuit	Video projector, presentation, discussion or online	2h
7. Modeling of direct current electrical circuits in the 20 Sim simulation program.	Video projector, presentation, discussion or online	2h
8. Making connection graphs for simple electrical circuits.	Video projector, presentation, discussion or online	2h
9. Procedures for constructing connection graphs for electrical circuits.	Video projector, presentation, discussion or online	2h
10. Checking the current and voltage characteristics for direct current electrical circuits using classical methods and simulation in 20 SIM.	Video projector, presentation, discussion or online	2h
11. Verification of Kirchhoff's Theorem I for direct current circuits by applying the simulation method in 20 SIM. Comparison of the results obtained in 20 SIM with the results obtained by the classical method.	Video projector, presentation, discussion or online	2h
12. Verification of Kirchhoff's Theorem II for direct current circuits by applying the simulation method in 20 SIM. Comparison of the results obtained in 20 SIM with the results obtained by the classical method.	Video projector, presentation, discussion or online	2h
13. Comparison of the results of some electrical circuits that are in direct current solved using the theorem of cyclic currents with simulation results using the connection graphs and the simulation program 20 SIM	Video projector, presentation, discussion or online	2h
14. Comparison of the results of some direct current electrical circuits solved using the potential theorem at nodes with simulation results using the connection graphs and the 20 SIM simulation program	Video projector, presentation, discussion or online	2h

Bibliography:

- 1. Grava A. "Calculation methods for engineers" University of Oradea Publishing House 2009;
- 2. Grava A. www.agrava.webhost.uoradea.ro;
- 3. Grava A. "Connection graphs in electrical engineering", University of Oradea Publishing House, 2004;
- 4. Grava A. "Connection graphs in electrical engineering Applications", University of Oradea Publishing House, 2009;
- 5. Moisil C.J. "Physics for engineers", Vol 1,2, Bucharest Technical Publishing House, 1967;
- 6. Nicolescu L.O. "Mathematics for engineers", Vol 1,2, Bucharest Technical Publishing House, 1971;
- 7. Popescu I. "Physics", Vol 1,2, Didactic and Pedagogical Publishing House, Bucharest, 1982;
- 8. Rudner V. "Problems of special mathematics", Didactic and Pedagogical Publishing House, Bucharest, 1982;
- 9. Şabac, I. Gh. "Special Mathematics", Didactic and Pedagogical Publishing House, Bucharest, 1983;
- 10. Cărțianu Gh. "Analysis and synthesis of electrical circuits" Didactic and pedagogical publishing

house - 1972.		
0.21 ala austam	Tanahina washada	No of house
8.2 Laboratory	Teaching methods	No. of hours/ Observations
1. Presentation of the 20 SIM simulation program	Simulasion or online simulation	2h
2. Analysis of electrical signals over time. Applications with the 20 SIM simulation program.	Simulasion or online simulation	2h
3. Use of functions for modeling complex systems.	Simulasion or online simulation	4h
4. Methods of modifying equations. Applications with the 20 SIM simulation program.	Simulasion or online simulation	2h
5. Power and energy variables. Input sizes	Simulasion or online simulation	2h
6. Analysis of the system of equations for an electrical circuit	Simulasion or online simulation	2h
7. Modeling of direct current electrical circuits in the 20 Sim simulation program.	Simulasion or online simulation	2h
8. Making connection graphs for simple electrical circuits.	Simulasion or online simulation	2h
9. Procedures for constructing connection graphs for electrical circuits.	Simulasion or online simulation	2h
10. Checking the current and voltage characteristics for direct current electrical circuits using classical methods and simulation in 20 SIM.	Simulasion or online simulation	2h
11. Verification of Kirchhoff's Theorem I for direct current circuits by applying the simulation method in 20 SIM. Comparison of the results obtained in 20 SIM with the results obtained by the classical method.	Simulasion or online simulation	2h
12. Verification of Kirchhoff's Theorem II for direct current circuits by applying the simulation method in 20 SIM. Comparison of the results obtained in 20 SIM with the results obtained by the classical method.	Simulasion or online simulation	2h
13. Comparison of the results of some electrical circuits that are in direct current solved using the theorem of cyclic currents with simulation results using the connection graphs and the simulation program 20 SIM	Simulasion or online simulation	2h
14. Comparison of the results of some direct current electrical circuits solved using the potential theorem at nodes with simulation results using the connection	Simulasion or online simulation	2h

graphs and the 20 SIM simulation program	

- 9. Corroborating the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program
 - 1. The content of the discipline is adapted and satisfies the requirements imposed on the labor market, being agreed by the social partners, professional associations and employers in the field related to the license program. The content of the discipline is found in the curriculum of the EM specialization and from other university centers in Romania that have accredited this specialization, so the knowledge of the basic notions is a stringent requirement of the employers in the field. For a better adaptation to the labor market requirements of the content of the discipline, meetings were held both with representatives of the business environment and with teachers from pre-university education.

10. Evaluation

10. Evaluation			
Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course		Paper - oral or online presentation The evaluation can be done face to face or online	70%
10.5 Laboratory	Laboratory Activity	Oral or online simulation presentation The evaluation can be done face to face or online	30%

10.8 Minimum performance standard:

Adequate use of basic knowledge of mathematics, physics, chemistry in developing a professional project of low complexity

Final Periodic Verification (VPF) Seminar (S), Laboratory(L), Project (P).

Grade calculation formula N = 70%Ex + 30%S;

Condition for obtaining loans:: $N \ge 5$; $S = \ge 5$; $L = \ge 5$; $P = \ge 5$.

Signature of the course holder

Completion date: 29.08.2022

Conf.univ.dr.ing. Grava Adriana Marcela

Signature of the laboratory holder

Conf.univ.dr.ing. Grava Adriana Marcela

Tel.: 0259 / 410.667, e-mail: agrava@uoradea.ro

Tel.: 0259 / 410.667, e-mail: agrava@uoradea.ro

Signature Departament Directory

Date of endorsement in the department:

Prof.univ.dr.ing.inf. Francisc – Ioan Hathazi

01.09.2022

Date de contact:

University of Oradea, Faculty of Electrical Engineering and Information Technology

e-mail: <u>ihathazi@uoradea.ro</u>

Pagina web: http://ihathazi.webhost.uoradea.ro/

Dean's Signature

prof.univ.dr.ing. Ioan – Mircea Gordan

Date de contact:

e-mail: mgordan@uoradea.ro

Pagina web: http://mgordan.webhost.uoradea.ro/

Date of endorsement in the department:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Elec	trotechnic mate	rials		
2.2 Holder of the subject			Lect	urer dr.ing. Claudi	a Olimpia Stașa	ac	
2.3 Holder of the academic seminar/laboratory/project			Lect	urer dr.ing. Claudi	a Olimpia Stașa	ac	
2.4 Year of study	2	2.5	2	2.6 Type of the	Ex -	2.7 Subject	Domain
		Semester		evaluation	Examination	regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	4	of which: 3.2	2	3.3 academic	-/2/-
			course		seminar/laboratory/project	
3.4 Total of hours from the curricul	um :	56	Of which: 3.5	28	3.6 academic	-/28/-
			course		seminar/laboratory/project	
Distribution of time						44hours
Study using the manual, course sup	port, b	oiblio	graphy and handy	vritten	notes	15
Supplementary documentation usin	g the l	librar	y, on field-related	l electi	onic platforms and in field-	15
related places					_	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			10			
Tutorials	Tutorials			2		
Examinations			2			
Other activities.						-
3.7 Total of hours for	44					
individual study						
3.9 Total of hours per	100					
semester						
3.10 Number of credits	4					

4. Pre-requisites (where applicable)

1 \	
4.1 related to the	(Conditions) - Electromagnetic field theory, Physics, Mathematics
curriculum	
4.2 related to skills	-Knowledge of electrical symbols, electrical diagrams, use of measuring devices, properties
	of materials.

5. Conditions (where applicable)

5.1. for the development of	The course can be conducted face-to-face or online
the course	-Videoprojector, Online Teaching Equipment
5.2.for the development of	Seminar/laboratory/project can be conducted face-to-face or online
the academic	- Equipment related to the conduct of laboratory hours
seminary/laboratory/project	- Preparation of the report, knowledge of the notions contained in the

	laboratory work to be carried out (synthesis material);							
	- Performing all the laboratory work.							
6. Spec	cific skills acquired							
Professional skills	 C1. Proper implementation of specific fundamental knowledge of mathematics, physics, chemistry, in the field of electrical engineering C3. Use of fundamental knowledge of electrotechnics C6. Diagnosis, troubleshooting and maintenance of electrical systems and components 							
Transversal skills								

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	1 6 6 1 1 1 /
7.1 The	The Course of Electrotechnical Materials is designed for the purpose of presenting
general	modern interdisciplinary problems regarding the study of electrical materials. Through
objective of	the topic addressed, the course is meant to allow students to acquire basic knowledge,
the subject	in the first stage, about the main phenomena that occur in the study of electrical
	materials. The course is also intended to facilitate students the development of basic
	theories and methods of physics, chemistry, suitable for the field of electrical
	engineering. During the course, the aim is to attract students to discussions on the
	issues presented so that they have an active participation
7.2 Specific	• The laboratory work is designed to provide future engineers in the field of electrical
objectives	systems. Description of basic concepts, theories and methods of physics, chemistry,
	suitable for the field of electrical engineering. In the first part of the class time, students
	are appropriated, by questions, discussions, or tests, of the theoretical notions
	necessary for laboratory activity, after which, under the supervision of the teacher, the
	experimental determinations are carried out. During the laboratory class time,
	discussions are held with the students, who aim to establish the knowledge, and the
	practical skills of carrying out the assembly schemes, the correct reading of the sizes
	pursued, and the method of evaluating them.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
	Teaching is	
	done "online",	
	or "face-to-	
	face" according	
	to requirements	
1. Anorganic and organic chemistry. Chemical bonds	During	2
	teaching,	
	student	
	contributions	
	are requested	
	on course-	
	specific topics.	
	Some courses	
	are conducted	
	by teaching the	
	subjects and	
	debating them	
	by students.	
2. Crystalline corps. Defects of crystalline networks	Idem	2
3 Energy bands of the electron in crystal	Idem	2

4. Electrical conduction of metals	Idem	2
5. Electrical conduction of semiconductors	Idem	2
6. Electrical polarization	Idem	2
8. Technical and technological properties of electrotechnical	Idem	2
materials		
9. Conductive materials. Metals	Idem	2
10 Semiconductor materials	Idem	2
11. Gaseous and liquid electro-insulating materials	Idem	2
12. Solid electro-insulating materials	Idem	2
13 Magnetic materials	Idem	2
14. Magnetic liquids	Idem	2

Bibliography

- [1]. Claudia Olimpia Staşac, D.A. Hoble Materials for Electrotechnical and Electronics University of Oradea Publishing House 2020 ISBN 978-606-10-2092-8
- [2]. D.A. Hoble Materials for Electrical and Electronic Engineering University of Oradea Publishing House 2013 ISBN 978-606-10-1171-1
- [3]. D. Hoble Electrotechnical Materials University of Oradea Publishing House 2004 ISBN 973-613-579-9
- [4] D. Hoble Electrotechnical Materials -Laboratory Advisor- U.O.-1998
- [5] Rodica Helera Materiale pentru componente electronice- Ed. MatrixRom București 2003
- [6] A.Ifrim ş.a. Materiale electrotehnice E.D.P. 1982

8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Work protection rules specific to electrical equipment. Getting	During the first	2
the basics of the study of electrical materials.	hour of the	
,	laboratory will be	
	presented by the	
	teacher	
	coordinator of	
	the laboratory	
	work of the	
	notions related to	
	the protection of	
	work specific to	
	electrical	
	materials.	
2. The crystalline structure.	Presentation by	2
	students of the	
	report prepared	
	(synthesis	
	material). The	
	laboratory guide	
	is available in	
	printed format	
	within the	
	Laboratory and at	
	the University	
	Library, with	
	students having	
	constant access	
	to teaching	
	materials Test on	
	- Test on theoretical	
	knowledge	
	related to the	
	laboratory	
	- Performing	
	experimetal	
	CAPELITIETAL	

	determinations - Interpretation of	
	the results	
	obtained.	
3. Study of volume resistivity.	idem	2
4. Study of surface resistivity	idem	2
5. Study of materials for contacts	idem	2
6. Dynamic study of brushes for electric machines	idem	2
7. Determination of dielectric rigidity in electro-insulating oils	idem	2
8. Determination of dielectric rigidity in solid dielectrics	idem	2
9. Determination of dielectric rigidity in gaseous dielectrics	idem	2
10. Study of viscosity of liquid dielectrics	idem	2
11. Study of Hygroscopicity.	idem	2
12. Determination of the characteristic of varistors.	idem	2
13. Study of the influence of temperature on photovoltaic cells.	idem	2
14 Evaluation of laboratory activity. End of the situation	14 Evaluation	2
	Teaching of	
	laboratories and	
	their support;	
	Remaining lab	
	recovery.	

Bibliography

- [1] D.A. Hoble Applications in the study of electrical materials University of Oradea Publishing House 2017 ISBN 978-606-10-1879-6
- [2]. D. Hoble Electrotechnical Materials University of Oradea Publishing House 2004 ISBN 973-613-579-9
- [3] D. Hoble Electrotechnical Materials -Laboratory Advisor- U.O.-1998
- [4] Rodica Hella Electronic Component Materials- Ed. MatrixRom Bucharest 2003
- [5] Petre Notingher Electrotechnical Materials. Uses. Ed. Politahnica Press 2005

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	For note 5: all subjects must be treated to minimum standards; -For grades >5 all subjects must be treated proportionally according to the scoring scale.	Written, oral or on-line examination	75 %
10.6 Laboratory	All laboratory work must be carried out, which is a condition to enter the exam.	Knowledge assessment test	25 %

10.8 Minimum performance standard:

Performing work under the coordination of a teacher, to solve problems specific to the study of electrical equipment and maintenance, maintenance and diagnosis of electrical equipment with the correct evaluation of workload, available resources, time of completion and risks, under conditions of application

of occupational safety and health rules. After the promotion of the discipline, the student must have the ability to understand the mechanisms of the main phenomena that take place at the level of the structure of electrotechnical materials, their main properties, so that he can choose the right meter in the various practical engineering applications.

Completion date Course owner's signature 29.08.2022

Signature of the laboratory owner

Lecturer. dr. ing. STAŞAC CLAUDIA OLIMPIA

Lecturer dr. ing. STAŞAC CLAUDIA OLIMPIA

Date of endorsement in the Electrical Engineering department:

01.09.2022

Prof.univ. dr. ing.inf.habil. Hathazi Francisc Ioan

Date of endorsement in the Faculty Board: 23.09.2022

Prof.univ.dr.ing.habil. Mircea Gordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject	Electro	omagnetic field theory			
2.2 Holder of the subject	Prof.D	rIng.Ec. Silaghi Alex	andrı	ı Marius	
2.3 Holder of the academic	Conf.D	Conf.Dr.Ing. Grava Adriana			
seminar/laboratory/project	As.Dro	l.Ing. Covaciu Mihaela	ı		
2.4 Year of study I 2.5 Ser	nester 2	2.6 Type of the	Ex	2.7 Subject regime	DD
		evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	6	of which: 3.2 course	3	3.3 academic seminar/laboratory/project	1/2
3.4 Total of hours from the curriculum	84	Of which: 3.5	42	3.6 academic	14/
		course		seminar/laboratory/project	28
Distribution of time					72h
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-		40			
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays		6			
Tutorials		20			
Examinations			2		
Other activities.			4		

3.7 Total of hours for	66
individual study	
3.9 Total of hours per	150
semester	
3.10 Number of credits	6

4. Pre-requisites (where applicable)

	4.1 related to the	Knowledge of mathematics and physics
	curriculum	
ſ	4.2 related to skills	PC usage

5. Conditions (where applicable)

5.1. for the development of	- attending at least 50% of the course
the course	
5.2.for the development of	- mandatory presence at all laboratory and seminar hours;
the academic	- students will perform the hours with the lab work;
seminary/laboratory/project	- maximum 2 works (30%) can be recovered during the semester;
	- frequency at laboratory less than 70% leads to the restoration of
	discipline.

6. Spec	ific skills acquired
	C1.1.Description of basic concepts, theories and methods of mathematics, physics, chemistry, suitable for the
	field of electrical engineering
	C.3 Operation with fundamental concepts in electrical engineering
S	C3.1 Description of the operating principles of transformers, static, electromechanical converters,
<u> </u>	Electrical equipment, the main sources of electromagnetic disturbances, as well as standards
<u>a</u>	on electromagnetic compatibility (EMC) of electrical and electronic equipment
Professional skills	
SSi	
ofe	
Pr	
al	
ers	
Fransversal skills	
Trans	
T	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	The course "Electromagnetic field theory" proposes to familiarize the students in the
general	field of Electrical Engineering with the knowledge in the theoretical field of
objective of	Electrotechnics and to present the Electromagnetic phenomena from the point of view
the subject	of the technical applications.
7.2 Specific	Being a fundamental specialty discipline in electrical engineering, its objective is to
objectives	present some computational methods in a unitary framework, which are necessary for
	solving the problems of classical or modern industrial electrotechnics.
	 Without neglecting the theoretical aspect of the problems being treated, a greater
	emphasis was placed on practical applications, the course containing computational
	examples.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Chapter 1. INTRODUCTORY CONSTITUENTS	Free exposure,	3 h
	with the	
	presentation on-	
	line	
Chapter 2. ELECTROMAGNETIC FIELD IN ELECTROSTATIC	Free exposure,	12 h
REGIME	with the	
	presentation on-	
	line	
Chapter 3. ELECTROMAGNETIC FIELD IN ELECTROCINETIC	Free exposure,	12 h
REGIME	with the	
	presentation on-	
	line	
Chapter 4. MAGNETIC FIELD IN AIR AND SUBSTANCE	Free exposure,	12 h
	with the	
	presentation on-	
	line	
Chapter 5. MAGNETIC ENERGY AND MAGNETIC FORCES	Free exposure,	3 h
	with the	
	presentation on-	
	line	
Total		42 h

Bibliography

^{1.} Andrei, H.L., Popovici, D., Cepişcă, C.- Inginerie Electrică Modernă, vol. 1, Editura Electra București, 250 pp., 2003, ISBN 973-8067-87-1.

^{2.} Hănțilă, I.F., s.a., Silaghi, M., Leuca, T.-Elemente de circuit cu efect de câmp electromagnetic

Editura ICPE, București, 1998.

- 3. William H.Hyat, John A. Buck, Engineering Electromagnetics, McGraw Hill, 2000
- 4. Kose, V., Sivert, J.- Non Linear Electromagnetic Systems. Advanced Techniques and Mathematical Methods, IOS Press, 1998
- 5. Maghiar, T., Leuca, T., Silaghi, M.,s.a. Electrotehnică, curs, Editura Universitații din Oradea, 1999
- 6. Rohde, L.U., Jain, G. C., Poddar, A.K., Ghosh, A. K.- <u>Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners</u>, Wiley, 2012
- 7. Sora, C.-Bazele electrotehnicii, Editura Didactică și Pedagogică, Bucuresti, 1982.
- 8. Silaghi , A.M., Pantea, M.D. Introducere in Electrotehnica, Editura Risoprint, Cluj-Napoca, 2010, ISBN 978-973-53-0258-0
- 9. Silaghi , A.M., Pantea, M.D., Silaghi, Helga Electrotehnica industriala, Editura Universității din Oradea, 2010, ISBN 978-606-10-0186-6
- 10. Süsse,R., Marx,B. Theoretische Elektrotechnik. Varationsrechnung und Maxwellsche gleichungen,Wissenschaftsverlag Mannhei, 1994, ISBN 3-411-1781-2 hhtp://prola.aps.org

8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
0.2 Freddomine Seminary Ideotratory, project	methods	Observations
Solving electrostatic problemens	During the	4 h
	seminar classes	
	there is an	
	application of	
	the theoretical	
	parts of the	
	course,	
	emphasis is	
	placed on	
	interactice	
	methods	
2. Electrostatic field		2 h
3. Capacities and capacitors		2 h
4. Stationary electrocinetic field		2 h
5. Stationary linear electrical circuits		2 h
6. Stationary magnetic field in vacuum		2 h
7. Stationary magnetic field in bodies		2 h
Total		14 h
Bibliography		
1. Silaghi, A., M., Durgau Maria - Teoria campului electromagnetic, culegere		
de probleme, Editura Universitatii din Oradea, 2014, ISBN 978-606-10-1388-3		
2. Silaghi, A., M., Durgau Maria - Teoria campului electromagnetic, culegere		
de probleme, vol. II, Editura Universitatii din Oradea, 2016, ISBN 978-606-10-1869-7		
3. Gavrilă, H., Spinei, F., Ionescu, G., Andrei, H. Electrotehnica. Aplicații și probleme, Tipografia I.P.B., 195 pg., 1989		
1. Presentation of the topic and the laboratory. Instructions for work	Students receive	4 h
safety technique	lab reports at	
	least one week	
	before, study	
	them, study	
	them, and give	
	a theoretical test	
	at the beginning	
	of the lab. Then,	
	students	
	complete the	
	practical part of	
	the paper under	
	the guidance of	
	the teacher.	

Free	
presentation on	
how to mount	
the assemblies	
and check them	
after the	
students have	
finished the	
assembly.	
	4 h
	4 h
	4 h
	4 h
	4 h
	4 h
	28 h
	presentation on how to mount the assemblies and check them after the students have finished the

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is found in the curriculum of Electrical Engineering and Computers, Electrical or Electromechanical Systems and other university centers in Romania that have accredited these specializations, so knowledge of their basic notions in Electrical Engineering is a stringent requirement of employers in the field (Plexus, Faist Mekatronics, Celestica, Comau, GMAB etc) from the Oradea Industrial Park area.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percent from the
		methods	final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard 1pt ex officio - attendance at the course 4PT 4 medium-level subjects - For 10: 1pt ex officio - attendance at the course 9PT 9 medium-level subjects	Questioner on line with 9 subjects	80%

10.5 Academic seminar	Minimum required conditions for passing the examination (grade 5): in accordance with the minimum performance standard For 10: solving the proposed problems	Free presentation with interactive discussion	10 %
10.6 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard For 10: 1pt ex officio - attendance at the course 9PT 9 medium-level subjects	Questioner on line with 9 subjects	10%
10.7 Final exam note:	Nfe=0,8Nse+0,1Nla+0,1Nse, Nla>5		

10.8 Minimum performance standard:

Course:- knowing the construction parts and the principle of operation of different electrical equipment.

- the ability to identify a particular type of electrical circuit
- participating in at least half of the courses.

Academic seminar: - ability to solve the electromagnetic problems.

Laboratory: - ability to conceive and read an electrical scheme

- ability to carry out an electrical installation;
- participation in all laboratory work.

E110, tel.:+40 259 408 458, masilaghi@uoradea.ro, hhtp://masilaghi.webhost.uoradea.ro

Completion date: 29.08.2022

<u>Date of endorsement in the department:01.09.2022</u>

Date of endorsement in the Faculty

Board: 23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		COMPUTER AIDED GRAPHICS I				
2.2 Holder of the si	ıbjec	t	head of works dr.eng. SEBEŞAN RADU				
2.3 Holder of the acseminar/laboratory.			head of works dr.eng. SEBEŞAN RADU				
2.4 Year of study	1	2.5 Semester	1	2.6 Type of the evaluation	Vp - Continuous Assessment	2.7 Subject regime	Fundamental Discipline FD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic seminar/laboratory/project	-/2/-
3.4 Total of hours from the curriculum	56	Of which: 3.5 course	28	3.6 academic seminar/laboratory/project	-/28/-
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					15
Supplementary documentation using the library, on field-related electronic platforms and in fieldrelated places					15
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					12
Tutorials					
Examinations					2
Other activities.					

3.7 Total of hours for individual	44
study	
3.9 Total of hours per semester	100
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) - Knowledge of descriptive geometry
4.2 related to skills	-

5. Conditions (where applicable)

	tions (where applicable)	
5.1. for course	•	- Video projector they can take place face to face or online
5.2.for the development of the academic seminary/laboratory/project		Laboratory hours - computers, software AutoCAD
6. Spec	cific skills acquired	
Professionalskills	C6.1. Definition of batelectromechanical systems (C6.2 Identification and in electromechanical states)	d selection of components for operation, maintenance and integration systems and technical means for increasing the reliability of
Transversal skills	completion, the works the related risks. CT3. Effective use of	e objectives to be achieved, the resources available, the conditions for ing steps, the working times, the related implementation deadlines and information and communication resources and assisted training realized software applications, databases, on-line courses) both in international language.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	☐ Course of "Computer Aided Drawing I" is the general technical discipline, required in the formation of future engineers. It aims to acquire fundamental knowledge of engineering graphics, universal language of communication in the technical field
7.2 Specific objectives	□ The course aims at acquiring the basic knowledge in the field of orthogonal representation, obtaining the true size, geometric elements and the deployments defining the technical parts. Learn the rules of representation, grading and scoring of technical drawings, according to the world-wide rules through ISO, using the computer using AutoCAD software □ The lab acquaints students with practical aspects of drawing technical drawings using the computer using AutoCAD software.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
Course 1. Presentation of the AutoCAD operating mode. The AutoCAD User Interface. Launching orders. Data input. Selecting objects. Display Control. Establishing the drawing environment. End of work session.	Free exposure, with course presentation on video projector and on blackboard	2 h

Course 2. Use basic commands for drawing, editing, and specifying entity-specific points. Draw commands for base entities. Commands used to modify and edit drawings. Using Object Snap Modes (Object SNAP). Selection sets.	Idem	2 h
Course 3. Orders for making connections and bevels. Orders that allow copying, moving, scaling, and splitting entities.	Idem	2 h
Course 4. General rules for the execution of the technical drawings Lines used in the technical drawing. Formats of technical drawings. Indicator. Numerical scales used in the technical drawing. Standardized writing. Representations	Idem	2 h
used in industrial design: Representation in double and triple orthogonal point projection.		
Course 5. Orthogonal representation of the straight. Double Orthogonal Projection of the Straight. Triple Orthogonal Projection of Straight.	Idem	2 h
Course 6. Rules for the representation and marking of views and sections. Layout of the projections in the plan. Classification of views. Section representation of parts. Classification of sections. Notation of section sectioning path.	Idem	2 h
Course 7. Use of commands for quoting drawings. Rules and quotation rules. Elements of quote. Symbols used for enrolling quotas. Quoting specific elements. Classification of allowances. Quoting methods.	Idem	2 h
Course 8. Quoting drawings with AutoCAD. Configuring Query Elements. Print text. Text style. Text input	Idem	2 h
Course 9. Viewing a drawing. Hatching and representing breaks. Study some drawing display commands. Hatching. Hatch styles. Representation of ruptures.	Idem	2 h
Course 10. Using Layers. Layer Definition. Create and modify layers. Determining the color and layer type of layers. Define blocks. Studying commands for creating and inserting blocks into AutoCAD.	Idem	2 h
Course 11. Elements of 3D Modeling and Visualization. Introduction to 3D modeling. Types of three-dimensional models. Superficial models. Coordinate systems in 3D. Creating surfaces. Modeling solids. Generating Solids. Editing Solid Objects. Quoting in 3D		2 h

Course 12. Modeling solids. Generating Solids. Editing Solid Objects. Quoting in 3D	2 h
Course 13. Modeling in three-dimensional space	2 h
Course 14. Construction of surface solids modeling	2 h
three-dimensional solids	

Bibliography

- 1.Durgău, M., Sebeşan, R., Technical drawing in electrotechnics, University of Oradea, 2006
- 2.Dolga, Lia, Technical drawing for electrotechnics, Ed. Politehnica Timişoara, 2002
- 3. Segal L., Ciobanasu G., Engineering Graphics, Tehnoexpres Iasi, 2003
- 4.Simion, I., AutoCAD 2007 for Engineers, Theora Edition, 2007
- 5.R. Păunescu Technical and Infographic Drawing Ed.Univ.Brasov, 2006

6. M.Durgău, R.Sebeşan - Graphics and Computer Assisted Drawing, Litogr. Course, 2010					
8.2 Laboratory	Teaching methods	No. of hours/ Observations			
1.Presentation of the laboratory, labor protection norms and laboratory works.	For the laboratory applications the students will have at their disposal written	2 h			
	materials with the presentation of the way of carrying out the practical work. The applications contain written, concrete instructions, as well as general information about new commands encountered. For the development of practical applications students will use the computer network and the AutoCAD program provided by the technical drawing				
2.Execution of drawings using absolute, relative, polar	laboratory	2 h			
coordinates and LINE, GRID, SNAP, ERASE commands. 3. Realization of the sandarded A3 drawing format and the indicator.		2 h			
4. Representations in double and orthogonal projection of the point Representations in double orthogonal projection of the right.		2 h			
5. Making drawings using editing commands with the specification of some attachment points.		2 h			
6. Representation in view using the rules of representation and notation of views.		2 h			
7. Representation of the drawings in section in compliance with the indicated sectioning paths.		2 h			
8. Configuring the dimension elements. Drawing drawings.		2 h			
9. Applications with the exercise of the main editing commands: Breack, Offset, Extens, Fillet, Chamfer, Array.		2 h			

10. Combining drawing and editing commands to obtain the desired model.	2 h
11. Dimensioning drawings in interactive graphics and using non-graphic elements such as texts, tables, symbols.	2 h
12. Making a three-dimensional 3D drawing.	2 h
13. Recovery of laboratory works.	2 h
14. Assessment of knowledge acquired during laboratory	2 h
hours.	

Bibliography

- 1. Durgău M., Sebeşan R., Computer aided graphics / laboratory works,, 2012,
- 2. M.Durgău, R. Sebeşan Computer Aided Graphics Wiring Diagrams, 2012
- 3. M.Durgău Laboratory works Computer aided technical drawing, 2014
- 9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program
 - The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	- for grade 5 is required knowledge of notions fundamentals required in the subjects, without presenting details on their - for grade 10, is required thorough knowledge of alltopics	Written examination	60 %
10.6 Laboratory	- for grade 5, recognition stands used in the realization laboratory work without present details about them - for grade 10, knowledge detailed method of practical realization of all laboratory work	Knowledge assessment test	40 %

10.8 Minimum performance standard:

Course:

- Ability to collaborate with specialists from various fields in the development of complex projects;
- Formation and development of the capacity of spatial thinking in the modeling of the industrial forms and of the graphic skills necessary for the realization correct of a drawing;
- Acquiring basic knowledge for the use of specific design programs AutoCAD with other utilities related to:

databases, strength calculation, industrial design, two and three dimensional representations,

- Acquiring knowledge of computer-aided engineering graphics; - Participation in at least half of the courses.

Laboratory:

- Ability to make a technical drawing according to technical standards, using the AutoCAD program

Completion date:

29.08.2022

<u>Date of endorsement in the department:</u>

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			COMPUTER AIDED GRAPHICS II				
2.2 Holder of the subject		t	head of works dr.eng. SEBEŞAN RADU				
2.3 Holder of the academic seminar/laboratory/project			head	of works dr.eng. S	SEBEŞAN RA	DU	
2.4 Year of study	1	2.5 Semester	2	2.6 Type of the evaluation	Vp	2.7 Subject regime	Fundamental Discipline FD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic seminar/laboratory/project	-/2/-
3.4 Total of hours from the curriculum	56	Of which: 3.5 course	28	3.6 academic seminar/laboratory/project	-/28/-
Distribution of time					hours
Study using the manual, course support,	biblio	graphy and handw	ritten	notes	25
Supplementary documentation using the fieldrelated places	librar	y, on field-related	electro	onic platforms and in	20
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	rtfolios	and essays	20
Tutorials					2
Examinations					2
Other activities.					

3.7 Total of hours for individual	69
study	
3.9 Total of hours per semester	125
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) - Technical drawing, Electrotechnical materials, Electrical equipment, Electric machines;
4.2 related to skills	- Knowledge of symbols, graphics, specific to electrical schemes.

5. Conditions (where applicable)

. Conditi	ions (where applicable)		
5.1. for to	the development of the	Video projector, computer.	
5.2.for the development of the academic seminary/laboratory/project		- The equipment related to the laboratory class; - Preparation of the report, knowledge of the notions included in the laboratory work to perform it (synthesis material); - Carrying out all laboratory work. Face to face and online	
6. Speci	fic skills acquired		
Professional skills	- C2. Use of fundamental cor Design of electrical systems a	ncepts of computer science and information technology - C4. and their components	
Transversal skills		nation and communication sources and assisted professional training (Internet portals, ons, databases, online courses etc.) both in Romanian and in a foreign language.	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	"Graphics Assisted by Computer II" is the general technical discipline, compulsory in the formation of future engineers. Its aim is to acquire fundamental knowledge of engineering graphics, the universal language of communication in the technical field;
7.2 Specific objectives	□ Considering the field of "Electrical Engineering", the students to whom it is addressed, the course "Graphics Assisted by Computer II" proposes a study on the most modern electrical and electronic schemes. In most cases, electronic installations occurred in those areas where conventional installations did not respond or were given, could only be partial, demanding and without ensuring a high quality. For this reason, each chapter insists on the advantages and disadvantages of each type of electrical and electronic schemes by using computer-aided graphics. □ The laboratory work follows the actual study of electrical and electronic schemes with the help of OrCAD and Electronics Workbench. Knowledge and observance of technical legislation, in areas of specialty in general and in the electrical field in particular, is an essential requirement for conducting in good technical and economic conditions the safety of specific activities

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations

Chapter 1. Introductory computer-aided graphics 1.1. Integration of CAE-CAD-CAM components 1.2. CAD software package categories 1.3. CAD Resources for Internet 1.4. Manufacturers and CAD software	Video projector; Courses take place by teaching subjects and engaging students in dialogues. Intercalated student contributions are requested on subject-specific subjects.	4
Chapter 2. The graphic elements in the realization of electrical and electronic projects with the help of the computer 2.1. Automatic Electronic Design (EDA) 2.2. Electronic Documentation 2.3. Conventional signs used in electrical and schemes	Idem	4
Chapter 3. Basic rules in the representation of computer and electrical schemes 3.1. Conditions imposed on control systems 3.2. System flexibility and order convenience	Idem	4
Chapter 4. Electrical schemes. Computer-aided graphic representation methods 4.1. Electrical schemes 4.1.1.Explicative (functional, circuit, equivalent) 4.1.2. Connection (external, internal, terminals) 4.1.3. Location	Idem	4
Chapter 5. Presentation of the OrCAD program 5.1. Overview of the OrCAD software package 5.1.1. OrCAD Capture 5.1.2. OrCAD Layout	Idem	4
Chapter 6 Creating the OrCAD Capture PC Board Wizard project 6.1 Launch of the Orcad Capture program and the project management application.	Idem	4
Chapter 7. Presentation of the Electronics Workbench program 7.1. Electronics Workbench program menu, editing the electronic drawing	Idem	4
Bibliography 1. Durgău, M., Sebeşan, R., - Technical drawing in electrotechnics, Ec. 2. Dolga, Lia, - Technical drawing for electrotechnics, Ed. Politehnica 3. Segal L., Ciobanasu G., - Engineering Graphics, Tehnoexpres Iasi, 2 4. Simion, I., - AutoCAD 2007 for Engineers, Ed. Theory Teora, 2007 5. R. Păunescu - Technical and Infographic Drawing - Ed. Of the Univ 6. M.Durgău, R.Sebeşan - Graphic Design and Computer Assisted Design	a Timisoara, 2002. 2003. Versity of.Brasov, 2	
8.2 Laboratory	Teaching methods	No. of hours/ Observations

Using OrCAD Capture	For laboratory applications, students will have written materials presenting how to practice. The applications contain written, concrete instructions as well as general information about new orders. For practical applications, students will use the computer network and the Orcad Capture, Electronics Workbench program in the laboratory.	6
2. Graphic examples of functional schemes made with OrCAD Capture.	Idem	2
3. Graphic examples of circuit schemes made with OrCAD Capture.	Idem	2
4. Graphic examples of equivalent schemes made with OrCAD Capture.	Idem	2
5. Schematics of external, internal or OrCAD Capture terminals.	Idem	2
6. Orcad Capture electric drive schemes.	Idem	4
7. Using Electronics Workbench - the Electronics Workbench program name, editing the electrical layout	Idem	4
8. Graphic examples of electronic schemes made with Electronics Workbench	Idem	4
9. Final check	Teaching laboratories by supporting them;	2

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In
order to provide a better accomodation to the labour market requirements, there have been organized
meetings both with representatives of the socio-economic environment and with academic staff with
similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the	
			final mark	

10.4 Course	Ability to work with specialists from diverse fields to develop complex projects; Formation and development of spatial thinking capacity in the shaping of industrial electrical schemes and graphic skills necessary for the correct execution of an electrical scheme. Acquiring basic knowledge for using specific design programs - OrCAD Capture, Electronics Workbench with other utilities related to: databases. Acquiring computer-aided engineering graphics; Participation in at least half of the courses	-Verification The discipline ends at the end of the second semester. Minimum promotion mark = 5, with both components = 5 (course + lab) Examination module: Partial tests based on tests / homeworks. Overall rating; Applications - Practical (duration 1 hour). Theory / Writing (duration 1 hour) Structure of topics: Test with questions in the course theme.	60%
10.6 Laboratory	The ability to draw a technical drawing according to technical standards with the help of OrCAD Capture, Electronics Workbench Participation in all laboratory work	Test + practical application Creating an execution drawing in OrCAD Capture, Electronics Workbench. Each student receives a grade for laboratory work during the semester and for the laboratory work. This results in a laboratory average.	40 %

10.8 Minimum performance standard:

- Undertaking coordinated work to solve specific problems in the field, with the correct assessment of the workload, the available resources, the time required to complete and the risks, under the conditions of the application of the safety and health rules at work. Solving relevant applications for processing and representing data specific to electrical engineering.

Completion date:

29.08.2022

<u>Date of endorsement in the department:</u>

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	ELECTROMECHANICS/ Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject		ANALOGICAL AND DIGITAL ELECTRONICS I					
2.2 Holder of the subject		Professor eng.PhD CORNELIA EMILIA GORDAN					
2.3 Holder of the academic seminar/laboratory/project		Lect	urer eng.PhD LUCIAN MORO	GOŞ			
2.4 Year of study	II	2.5 Semester	3	2.6 Type of the evaluation	EX.	2.7 Subject regime	I

(I) Imposed (O) Optional

3. Total estimated time (hours of didactic activities per semester)

er rotti estimatea time (nears er an	440110	activities per semiester,			
3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic laboratory	2
3.4 Total hours from the curriculum	56	of which: 3.5 course	28	3.6 academiclaboratory	28
Distribution of time	Distribution of time				
					urs
Study using the manual, course support, references and handwritten notes					24
Supplementary documentation using the library, on field-related electronic platforms and in field-related					14
places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					22
Tutorials					-
Examinations					9
Other activities.					-

3.7 Total hours for individual study	69
3.9 Total hours per semester	125
3.10 Number of credits	5

4. Pre-requisites(where applicable)

4.1 related to the curriculum	(Conditions)
4.2 related to skills	

5. Conditions (where applicable)

5.1. for course development	video projector, laptop, smart board
5.2.for academic laboratory development	The existence of the apparatus and equipment necessary for the development in optimal conditions of the works provided in the discipline file. Providing students with the laboratory guide in printed or electronic format.

6. Spec	6. Specific skills acquired					
al skil	 C3. Use of fundamental knowledge in electrotechnics. Description of the operating principles of transformers, static converters, electromechanical, electrical equipment, the main sources of electromagnetic disturbances, as well as the rules on electromagnetic compatibility (EMC) of electrical and electronic equipment. Explanation and interpretation of the operating regimes of static, electromechanical converters, electrical and electromechanical equipment. C6. Diagnosis, troubleshooting and maintenance of electrical systems and components. Defining the basic concepts regarding the operation and maintenance of electromechanical systems. Commissioning, testing, fault analysis and troubleshooting of electromechanical systems. 					
Trans- versal skills	•					

7. Objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1	 The course is taught to second year Electromechanics students. The course addresses notions that will
General	allow future graduates to have a wealth of information on the construction, operation and use of
objective	semiconductor electronic devices (semiconductor diode, Zener diode, bipolar transistors, field effect
of the	transistors, thyristor, etc.) and of elementary electronic circuits (limiting circuits, mono and
subject	bialternating rectifiers, thyristor circuits, simple circuits with operational amplifiers, simple
Subject	amplification stages).
7.2	 Structure, characteristics and operation of semiconductor devices.
Specific	 Use of linear models on portions of electronic devices to solve circuits.
objectives	 Design and operation of simple electronic circuits with diodes, bipolar transistors, field effect
	transistors, thyristors, operational amplifiers.
	 Developing a positive attitude towards the activities of assimilating new professional knowledge and
	information, cultivating and promoting a scientific environment focused on values, forming a positive
	and responsible professional behavior.

8. Contents*

8.1 Course (on site/ on-line)	Teaching methods	No. of hours/
	_	Observations
Generalities - Electrical conduction in semiconductors.	Interactive	2 hours
Bipolar	lecture;exposure;video	
•	projector presentation	
Diodes - pn semiconductor diode, Zener diode, varicap diode,	Interactive	2 hours
LED (symbol, internal structure, characteristic V-A,	lecture;exposure;video	
characteristic parameters).	projector presentation	
Bipolar transistor I - General; Operation in the active region:	Interactive	2 hours
characteristics, equivalent circuits, operating parameters,	lecture;exposure;video	
polarization.	projector presentation	
Bipolar transistor II - Blocking and saturation operation:	Interactive	2 hours
characteristics, equivalent circuits, operating parameters.	lecture;exposure;video	
	projector presentation	
Bipolar transistor III - Model with hybrid parameters:	Interactive	4 hours
definition of parameters, equivalent circuits, diagrams with a	lecture;exposure;video	
transistor in different assemblies, simplified model.	projector presentation	
Thyristor - Symbol, internal structure, V-A characteristic,	Interactive	2 hours
operating parameters	lecture;exposure;video	
	projector presentation	
Field effect transistors I - General; TEC-J with initial channel	Interactive	2 hours
and with induced channel (symbol, characteristic and	lecture;exposure;video	
operating parameters).	projector presentation	
Field effect transistors II - TEC-MOS with initial channel and	Interactive	2 hours
with induced channel (symbol, characteristic and operating	lecture;exposure;video	
parameters).	projector presentation	
Operational amplifiers - General (symbol, characteristics and	Interactive	4 hours
operating parameters). Applications: inverter and non-inverter	lecture;exposure;video	
circuits, adder, differentiation circuit, derivative circuit,	projector presentation	
integrator, logarithmic circuit, precision rectifier.		
Diode rectifier circuits - Mono-alternating, bi-alternating	Interactive	2 hours
(with median socket, in bridge), with voltage doubling:	lecture;exposure;video	
schemes, mode and operating characteristics.	projector presentation	
Stabilization circuits - Classifications; Operating	Interactive	2 hours
parameters;Component element.	lecture;exposure;video	
	projector presentation	
Transistor Voltage Stabilizers - Schemes with transistors and	Interactive	2 hours
operational amplifier, with and without protection circuit.	lecture;exposure;video	
	projector presentation	

Referencies

- . **C.Gordan**, R.Reiz, L.Ţepelea, L.Morgoş: *Electronică Analogică și Digitală*, Editura Universit. din Oradea 2010. **2. C.Gordan**, A.Burca: *Dispozitive electronice*, Curs format electronic, 2015, ISBN 978-606-10-1751-5,
- Edit.Univ.Oradea
- 3. S.Castrase, A.Burca, **C.Gordan***Dispozitive și circuite electronice*, Îndrumător de lucrări de laborator,ISBN 978-606-10-1610-5 Editura Universității din Oradea 2015.
- 4. R. Albu, C.Gordan: Electronică Analogică și Digitală I, Îndrumător de lucrări de laborator format electronic,

Editura Universitatii din Oradea 2018, ISBN 978-606-10-1955-7.					
8.2 Academic seminar/laboratory/project(on site/ on-	Teaching methods	No. of hours/			
line)		Observations			
Presentation of laboratory works	Practical applications. Discussions	2 hours			
2. Study of the semiconductor diode	Practical applications. Discussions	2 hours			
3. Zener diode	Practical applications. Discussions	2 hours			
4. Bipolar transistor - characteristics	Practical applications. Discussions	2 hours			
5. Bipolar transistor in common base mounting	Practical applications. Discussions	2 hours			
6. Bipolar transistor in common emitter assembly	Practical applications. Discussions	2 hours			
7. Field effect transistors	Practical applications. Discussions	2 hours			
8. The thyristor	Practical applications. Discussions	2 hours			
9. Inverters	Practical applications. Discussions	2 hours			
10. Operating amplifier in inverter, non-inverter, adder	Practical applications. Discussions	2 hours			
assembly					
11. Operational amplifier in integrator and logarithmic	Practical application. Discussions	2 hours			
assembly					
12. Mono-alternating rectifier circuits	Practical applications. Discussions	2 hours			
13. Double-alternating rectifier circuits	Practical applications. Discussions	2 hours			
14. Recovery of laboratories. Ending the school situation.	Practical applications. Discussions	2 hours			

References

- 1 C.Gordan, R.Reiz, L.Ţepelea, L.Morgoș: *Electronică Analogică și Digitală*, Editura Universit. din Oradea 2010.
- 2. **C.Gordan**, A.Burca: *Dispozitive electronice*, Curs format electronic, 2015, ISBN 978-606-10-1751-5, Edit.Univ.Oradea
- 3. S.Castrase, A.Burca, **C.Gordan**: *Dispozitive și circuite electronice*, Îndrumător de lucrări de laborator, ISBN 978-606-10-1610-4, Editura Universității din Oradea 2015.
- 4. R. Albu, **C.Gordan**: *Electronică Analogică și Digitală I*, Îndrumător de lucrări de laborator format electronic, Editura Universitatii din Oradea 2018, ISBN 978-606-10-1955-7.

9. Corroboration of the discipline content with the expectations of the representatives of epistemology-cal community, professional associations and representative employers in the field related to the specialisation

 Introduction in the courses and laboratory works of some subjects of interest for the profile economic environment in the industrial area of the city.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percent from
		methods	the final mark
10.4 Course	For 10:	Oral or written	60 %
	Active participation in the developed	evaluation, online or	
	discussions.Documented arguments.Providing	on-	
	relevant solutions to the issues under	site.Discussions.Argue.	
	debate.Knowledge of the basics on all topics		
	covered.		
10.5 Seminar	-	-	-
10.6 Laboratory	Written test marked with a minimum of 5.	Written test. Practical	40%
-	Practical realization of all the requirements	test. Discussions.	
	imposed by all laboratory works. Well-	Online or	
	documented arguments. Reading the required	on-site argumentation	
	bibliography.		
	A percentage of 15% of the final grade at the		
	laboratory is awarded for the successful		
	completion of all the topics provided for		
	individual study.		
10.7 Project	-	-	-

^{10.8} Minimum performance standard: obtaining a grade of 5 in each laboratory test; participation and fulfillment of all requirements imposed by each laboratory work; obtaining a grade of 5 in the course tests, as an arithmetic mean of the grades obtained in this type of activity. Knowledge of the basics on all the topics taught.

<u>Completion date:</u> <u>06.09.2022</u>

Date of endorsement in the 19.09.2022

department:

Date of endorsement in the Faculty Board:

23.09.2021

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	ELECTROMECHANICS/ Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject	ANALOGICAL AND DIGITAL ELECTRONICS II			
2.2 Holder of the subject Professor eng.PhD CORNELIA EMILIA GORDAN				
2.3 Holder of the academic seminar/laboratory/project	Lecturer eng.PhDADRIAN TRAIAN BURCĂ			
2.4 Year of study II 2.5 Semester	er 4 2.6 Type of the evaluation EX. 2.7 Subject regime I			

(I) Imposed (O) Optional

3. Total estimated time (hours of didactic activities per semester)

or rotal estimated time (notified and det		reset per semiester)			
3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 laboratory	2
3.4 Total of hours from the curriculum	56	of which: 3.5 course	28	3.6 laboratory	28
Distribution of time					44hours
Study using the manual, course support, refe	rences	and handwritten notes			12
Supplementary documentation using the library, on field-related electronic platforms and in field-				12	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					12
Tutorials				-	
Examinations				8	
Other activities.				-	

3.7 Total hours for individual study	48
3.9 Total hours per semester	100
3.10 Number of credits	4

4. Pre-requisites(where applicable)

4.1 related to the curriculum	(Conditions)
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development	video projector, laptop, smart board
of the course	
5.2.for the development	The existence of the apparatus and equipment necessary for the development in
of the laboratory	optimal conditions of the works provided in the discipline file.
	Providing students with the laboratory guide in printed or electronic format.

6. Specif	fic skills acquired			
	 C3. Use of fundamental knowledge in electrotechnics. 			
	- Description of the operating principles of transformers, static converters, electromechanical, electrical			
IIIs	equipment, the main sources of electromagnetic disturbances, as well as the rules on electromagnetic			
ski	compatibility (EMC) of electrical and electronic equipment.			
al s	- Explanation and interpretation of the operating regimes of static, electromechanical converters, electrical and			
ouo	electromechanical equipment			
Professional skills	 C5. Design and coordination of experiments and tests. 			
ofe	- Defining the basic concepts regarding the operation and maintenance of electromechanical systems.			
Pro	- Commissioning, operation test, fault analysis and troubleshooting of electromechanical systems.			
	•			
ns- sal Ils				
Trans- versal skills				

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

7.1 General objective of the subject	The course is taught to second year Electromechanics students. The course addresses notions that will allow future graduates to have a rich background on the design, operation and use of simple electronic circuits (amplifier, voltage stabilizer, harmonic oscillator, switching circuit, logic circuit)
7.2 Specific objectives	 The structure, characteristics and operation of simple electronic circuits (amplifier, voltage stabilizer, harmonic oscillator, switching circuit, logic circuit). Design and operation of simple electronic circuits such as direct current or alternating current amplifier, voltage stabilizer, LC or RC oscillator, switching circuit (bistable, monostable, stable), respectively logic circuit made in bipolar or unipolar technology. Developing a positive attitude towards the activities of assimilating new professional knowledge and information, cultivating and promoting a scientific environment focused on values, forming a positive and responsible professional behavior.

8. Contents*

8.1 Course (on site/ on-line)	Teaching methods	No. of hours/ Observations
Basic amplification stages - General (classifications, characteristics, parameters). Stages with a transistor in common-emitter, base-common, common-collector assemblies (parameters and operating characteristics).	Interactive lecture; exposure; video projector presentation	2 hours
Alternating current amplifiers - Schemes, parameters, amplification characteristics, operation.	Interactive lecture;exposure;video projector presentation	2 hours
Direct current amplifiers - Differential amplifier: diagram, operation, characteristic parameters.	Interactive lecture; exposure; video projector presentation	3 hours
Harmonic oscillators I - General; Classifications.	Interactive lecture;exposure;video projector presentation	3 hours
Harmonic oscillators II - LC oscillators (schemes, operation).	Interactive lecture; exposure; video projector presentation	2 hours
Harmonic oscillators III - RC oscillators; Quartz oscillators (schemes, operation).	Interactive lecture; exposure; video projector presentation	2 hours
Switching circuits I - Switching circuits without memory. Positive reaction in amplifiers (schemes, operation).	Interactive lecture; exposure; video projector presentation	3 hours
Switching circuits II - Tilting circuits with coupling in the emitter (diagrams, operation, characteristics).	Interactive lecture; exposure; video projector presentation	2 hours
Switching circuits III - Tilting circuits with coupling in the base collector: bistable, monostable, stable (diagrams, operation, characteristics).	Interactive lecture; exposure; video projector presentation	2 hours
Logic circuits I - Generalities; Basic logic functions; Simple logic diagrams made with diodes and transistors.	Interactive lecture; exposure; video projector presentation	2 hours
Logic circuits II - Families of logic circuits, made in bipolar or unipolar technology (schemes, operation).	Interactive lecture; exposure; video projector presentation	3 hours
Logic circuits III - Registers, counters (schemes, operation).	Interactive lecture; exposure; video projector presentation	2 hours

References

- 1. **C.Gordan**, R.Reiz, L.Ţepelea, L.Morgoș: *Electronică Analogică și Digitală*, Editura Universit. din Oradea 2010.
- 2. C.Gordan, A.Burca: *Dispozitive electronice*, Curs format electronic, 2015, ISBN 978-606-10-1751-5, Edit.Univ.Oradea
- 3. S.Castrase, A.Burca, **C.Gordan** *Dispozitive și circuite electronice*, Îndrumător de lucrări de laborator,ISBN 978-606-10-1610-5 Editura Universității din Oradea 2015.
- 4. R. Albu, **C.Gordan**: *Electronică Analogică și Digitală I*, Îndrumător de lucrări de laborator format electronic, Editura Universitatii din Oradea 2018, ISBN 978-606-10-1955-7.

8.2. Academic seminar	Teaching methods	No. of hours/
		Observations
8.3.Laboratory (on site/on-line)		
1. Presentation of the content and requirements required for the proper	Practical application.	2 hours
conduct of laboratory work.	Discussions	
2. Voltage stabilizers.	Practical application.	4 hours

	Discussions		
3. Alternating current amplifiers.	Practical	application.	4 hours
	Discussions		
4. Differential amplifier.	Practical	application.	2 hours
	Discussions		
5. Oscillators.	Practical	application.	4 hours
	Discussions		
6. Switching circuits.	Practical	application.	4 hours
	Discussions		
7. Logic circuits made in bipolar technology.	Practical	application.	4 hours
	Discussions		
8. Recovery of laboratories. Ending the school situation.	Practical	application.	4 hours
	Discussions		
8.4.Project			_

References

- 1 **C.Gordan**, R.Reiz, L.Ţepelea, L.Morgoș: *Electronică Analogică și Digitală*, Editura Universit. din Oradea 2010.
- 2. **C.Gordan**, A.Burca: *Dispozitive electronice*, Curs format electronic, 2015, ISBN 978-606-10-1751-5, Edit.Univ.Oradea
- 3. S.Castrase, A.Burca, **C.Gordan**: *Dispozitive și circuite electronice*, Îndrumător de lucrări de laborator, ISBN 978-606-10-1610-4, Editura Universității din Oradea 2015.
- 4. R. Albu, **C.Gordan**: *Electronică Analogică și Digitală I*, Îndrumător de lucrări de laborator format electronic, Editura Universitatii din Oradea 2018, ISBN 978-606-10-1955-7.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• Introduction in the courses and laboratory works of some subjects of interest for the profile economic environment in the industrial area of the city.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	For 10: Active participation in the developed discussions. Documented arguments. Providing relevant solutions to the issues under debate. Knowledge of the basics on all topics covered.	Oral or written evaluation, online or on- site.Discussions.Argue.	60 %
10.5 Academic	-	-	-
seminar			
10.6 Laboratory	Written test marked with a minimum of 5. Practical realization of all the requirements imposed by all laboratory works. Well-documented arguments. Reading the required bibliography. A percentage of 15% of the final grade at the laboratory is awarded for the successful completion of all the topics provided for individual study.	Written test. Practical test. Discussions. Online or on-site argumentation	40%
10.7 Project	-	-	-

10.8 Minimum performance standard: obtaining a grade of 5 in each laboratory test; participation and fulfillment of all requirements imposed by each laboratory work; obtaining a grade of 5 in the course tests, as an arithmetic mean of the grades obtained in this type of activity. Knowledge of the basics on all the topics taught.

	Comp	letion	date:
--	------	--------	-------

06.09.2022

Date of endorsement in the department:

19.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

1. Data related to the study program

1.1 High education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information
	Technology
1.3 Department	Department of Electrical Engineering
1.4 Study area	Electrical Engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	ELECTROMECHANICS / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		ELI	ECT	RICAL TECHNOL	OGI	ES	
2.2 Holder of the subject			Lect	urer	dr.ing. STAŞAC CLA	UDIA	OLIMPIA	
2.3 Holder of the academic seminar/laboratory/project		Lect	urer	dr.ing. STAŞAC CLA	UDIA	OLIMPIA		
2.4 Year of study	II	2.5 Semes	ster	4	2.6 Type of the evaluation	Vp.	2.7 Subject regime	Specialized Discipline (O)

3. Total estimated time (hours of didactic activities per semester)

3.1 No.of hours/week	3	of which: 3.2	2	3.3. academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the	42	of which:3.5 course	28	3.6 academic	-/14/-
curriculum				seminar/laboratory/project	
Distribution of time					33h
Study using the manual, course suppor	t, bib	oliography and handwri	itten	notes	10
Supplementary documentation using the	e lib	rary, on field-related e	lectro	onic platforms and in field-	10
related places					
Preparing academic seminaries/laborat	ories	/ themes/ reports/ portf	olios	and essays	10
Tutorials					1
Examinations			•		2
Other activities.					-

3.7 Total hours of individual study	33
3.9 Total hours per semester	75
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 related to the	(Restraints) Electrotechnics, Electrical equipment, Electrical installations,
curriculum	Electrical technology
4.2 related to skills	Knowledge of symbols, specific graphics, electrical diagrams

5. Conditions (where applicable)

5.1. for the development of	-Video projector, computer. The course can be held face to face or online
the course	
5.2. for the development of	- Equipment related to the conduct of seminar classes
the academic	- Preparation of the paper, knowledge of the notions contained in the
seminary/laboratory/project	seminar paper to be performed (synthesis material);

- Carrying out all seminar papers. The seminar can be held face-to-face or
online.

6. Spec	cific ski	ills acquired
SQ.	-	- C1. Proper implementation of specific fundamental knowledge of mathematics, physics,
Kill		chemistry, in the field of electrical engineering
1 s]	•	- C2. Use of fundamental concepts of computer science and information technology
ona	-	- C3. Use of fundamental knowledge of electrotechnics
Professional skills	•	- C4. Design of electrical systems and their components
Je	-	- C5. Design and coordination of experiments and tests
Pro	•	- C6. Diagnosis, troubleshooting and maintenance of electrical systems and components
	-	CT1. Identification of the objectives to be achieved, available resources, conditions to
<u>s</u>		complete them, working stages, working times, associated deadlines and risks
Crosscut skills	-	- CT2. Identification of the roles and responsibilities in a multidisciplinary team and use
ıt s		of relationship and effective working techniques in the team
SCL	-	- CT3. Effective use of information and communication sources and assisted professional
ros		training (Internet portals, specialized software applications, databases, online courses etc.)
O		both in Romanian and in a foreign language.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	The course of Electrical technologies is addressed to second year students, specialization, EM, and is designed to present modern interdisciplinary issues regarding reliability and diagnosis, quality of equipment and devices in the field of electrical engineering. Through the approached topic, the course is meant to allow students to acquire basic knowledge, in the first stage, will study reliability indicators of elements and systems on the main phenomena that occur in the operation of electrical
	appliances, and in the stage of second of some knowledge regarding the maintenance of electrical equipment. The course also aims to facilitate students' development of skills and competencies in the issue of correct choice of equipment that is part of electrical installations.
7.2 Specific objectives	 The seminar is designed to provide future engineers in the field of electrical engineering, practical skills in electrical maintenance, construction, research, operation, repair and maintenance of electrical, electromechanical, electrothermal installations. The content of the seminar presented is based on the need to deepen the problems presented in the course. The students have the opportunity to study the quality of electrical equipment and devices, identify, electrical supply diagrams of electrical equipment, familiarization with modern means of measuring temperature, electrical parameters during the operation of electrical equipment. They will be able to understand the complexity, usefulness and maintenance of these facilities and treat them as such. Knowledge is useful in the formation of skills to address the specific problems faced by a specialist in the field of electrical engineering.

8. Contents*

8.1 Course	Teaching methods	Nr. Hours/ Notes
1. Introduction The sides and structure of the production process. Preparation of the manufacture of an electrotechnical product; Defining the production process Breakdown by component elements. Their analysis. Defining the preparation cycle for the manufacture of an electrical product. Types of production. Characteristics;	 Video projector; The courses are carried out by teaching the subjects and involving the students in dialogues. Student contributions on course- specific topics are requested. 	2
2. Structure of execution projects. The structure of an EP. Analysis of the component elements;	Idem (same)	2
3 Technology of execution of electrical diagrams. Technologies for the realization of developed electrical diagrams. Node numbering principle, Clamps principle,	Idem	2
Mixed principle; 4. Transformer technology. Methodology for calculating low power transformers. Low power transformer design technology. Design sizes. Sizes to choose from. Sizes to be calculated. Verification stage.	Idem	2
5. Magnetic core technology for rotary electric machines. Materials for magnetic cores. Sheet metal cutting technology. Stamping technology. Example of technological flow for making sheets at the cores of rotary electric machines. Packaging technology;	Idem	2
6. Magnetic core technology for transformers and electrical appliances. Powdered magnetic core technology. Technology for making cores for transformers. Packaging methods. Technology for making sintered cores;	Idem	2
7. Winding technology. Used materials. Execution of windings. Technology for making Cu conductors, Soft winding technology. Technology for making concentrated and bucket windings from profiled conductor;	Idem	2
8. Impregnation, coating and compounding. Impregnation materials. Coil impregnation and compounding technologies;	Idem	2
9. Technology of contact elements and current paths. Connection element technology. Current path technology;	Idem	2
10. Brush and brush manufacturing technology. Materials for electric brushes. Classification of electric brushes. Use. Electric brush formatting technology;	Idem	2
11 Contact manufacturing technology for electrical appliances. Contact materials. Disruptive phenomena in electrical contacts. Technology for making electrical contacts;	Idem	2
12. Printed wiring design technology. Printed circuit technology. Obtaining the semi-finished product for printed circuits. Technological elements for making double layer wiring. Exemplification. Technological elements for making multilayer wiring;	Idem	2
13. Printed wiring execution technology. Bonding technologies on printed wiring. Used devices. Wave soldering technologies. Modern ultrasonic welding technologies;	Idem	2

14 Modern trends in electrical technologies. Analyzing	Idem	2
current trends in electrical technologies for making		
electrical products.		

Bibliography

- [1]. I. Bacivarov Conexiuni prin lipire în aparatura electronică E.T 1984.
- [2] C.Cruceru, T. Maghiar ș.a. Tehnologia reparării și întreținerii utilajelor electromecanice. E.D. P 1982
- [3] D. Hoble, L. Bandici, C. Stasac Studii aplicative în tehnologii electrice Ed. TREIRA Oradea 2006
- [4] D Hoble, Livia Bandici, Tehnologii electrice Editura Universitati din Oradea.
- [5] V. Iancu Tehnologia fabricării mașinilor și aparatelor electrice I.P.C.N 1979
- [6] I. Stana, N. Niţu Întreţinerea şi repararea maşinilor electrice E.T.Bucureşti 1985
- [7] Claudia Olimpia Stașac Tehnologia îmbinărilor nedemontabile utilizând metode inductive. Editura Universității din Oradea-2010
- [8] Claudia Staşac, Dorel Hoble. Tehnologii electrice-Note de curs pentru uzul studentilor, 2019.

8.2 Seminar	Teaching methods	No. hours / Notes
8.3 Laboratory		
Introduction. Presentation of the laboratory and laboratory works. Technical norms of work safety, fire prevention and extinguishing;	Presentation by students of the report prepared (synthesis material). The laboratory guide is available in printed format both at the University Library and in the Laboratory, the students having permanent access to the teaching materials;	2
2. The technology of execution of the schemes according to the principle of nodes. Correct marking of nodes, equipment and references from one board to another;	- Test regarding the theoretical knowledge related to the seminar; - Carrying out experimental determinations; - Interpretation of the obtained results;	2
3. Calculation of low power transformers;	Idem	2
4. Study of magnetic cores for rotary electric machines; Study of winding execution technology;	Idem	2
5. Electric brush repair technology;	Idem	2
6. Printed wiring design and execution technology;	Idem	2
7. Technology of gluing components on printed wiring.	Idem	2

Bibliography

- [1]. I. Bacivarov Conexiuni prin lipire în aparatura electronică E.T 1984.
- [2] C.Cruceru, T. Maghiar ș.a. Tehnologia reparării și întreținerii utilajelor electromecanice. E.D. P 1982
- [3] D. Hoble, L. Bandici, C. Stasac Studii aplicative în tehnologii electrice Ed. TREIRA Oradea 2006
- [4] D Hoble, Livia Bandici, Tehnologii electrice Editura Universitati din Oradea.
- [5] V. Iancu Tehnologia fabricării mașinilor și aparatelor electrice I.P.C.N 1979
- [6] I. Stana, N. Niţu Întreţinerea şi repararea maşinilor electrice E.T.Bucureşti 1985
- [7] Claudia Olimpia Stașac Tehnologia îmbinărilor nedemontabile utilizând metode inductive. Editura Universității din Oradea-2010
- [8] Claudia Staşac, Dorel Hoble. Tehnologii electrice-Note de curs pentru uzul studentilor, 2019.
 - Enlarge upon the content, mainly the number of hours allocated to each course/seminar/laboratory/project along the 14 weeks of each semester of the academic year.

9. Corroboration of the discipline content with the expectations of the epistemic community representatives, professional associations and representative employers of the program-related field

■ The content of the discipline is adapted and satisfies the requirements imposed by the labor market, being agreed by the social partners, professional associations and employers in the field related to the bachelor program. The content of the discipline is found in the curriculum of Electromechanics or Electrical Systems and other university centers in Romania that have accredited these specializations, so knowledge of the basics is a stringent requirement of employers in electromechanical, electrical, electronic such as: Faist, Comau, SC Stimin Industries S.A. Celestica, Connectronix, Plexus.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	- For grade 5 all subjects must be treated to minimum standards; - For grades 10 all subjects must be treated to maximum standards;	Written or oral exam - duration 2 hours. Students have the opportunity to choose the assessment method (written or oral exam). The exam consists of 3 topics from the course topic. In order to pass the exam, each subject must be treated for at least grade 5. The evaluation can be done face to face or online.	60 %
10.5 Seminar			10.04
10.6 Laboratory	In the last laboratory session, the students will present the laboratory works performed, respectively the results obtained.	All laboratory work must be performed, provided you enter the exam. - The weight of the laboratory is 40% of the value of the exam grade. - Only the second remaining laboratory is allowed to be recovered (in the last week of the semester).	40 %
10.7 Project			

- -Note components: Periodic Verification (VP), Laboratory (LF) and Report / synthesis material (R);
- -Note calculation formula: N = 0.50VP + 0.50LT; LF = 0.450L + 0.05R;
- Condition for obtaining loans: $N\geq 5$; $LF\geq 5$; $R\geq 5$.

10.8 Minimum performance standard: Carrying out works under coordination, in order to solve problems specific to the field, with the correct evaluation of the workload, available resources, the necessary completion time and risks, in conditions of application of occupational safety and health norms. Principle of operation and composition in electrical technologies.

Completion date Course owner's signature 29.08.2022

Signature of the laboratory owner

Lecturer. dr. ing. STAŞAC CLAUDIA OLIMPIA

Lecturer dr. ing. STAŞAC CLAUDIA OLIMPIA

Date of endorsement in the Electrical Engineering department:

01.09.2022

Prof.univ. dr. ing.inf.habil. Hathazi Francisc Ioan

Date of endorsement in the Faculty Board: 23.09.2022

Prof.univ.dr.ing.habil. Mircea Gordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Electrical Circuit Theory II				
2.2 Holder of the su	2.2 Holder of the subject prof.PhD.Hathazi Francisc – Ioan						
2.3 Holder of the ac seminar / laboratory			associated prof.PhD Molnar Carmen / drd.ing. Daiana Rus				
2.4 Year of study	II	2.5 Semest	ster II 2.6 Type of the Ex. 2.7 Subject Domain Disc			Domain Discipline	
			evaluation regime (DD)				(DD)

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	6	of which: 3.2	3	3.3 academic		1 / 2 /-
		course		seminar/laboratory/pro	ject	
3.4 Total of hours from the curriculum	70	of which: 3.5	42	3.6 academic		14/28/
		course		seminar/laboratory/pro	ject	
Distribution of time					55 h	ours
Study using the manual, course support, bibliography and handwritten notes					15	
Supplementary documentation using the library, on field-related electronic platforms and in field-					1	0
related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					1	0
Tutorials					2	2
Examinations				4	4	
Other activities.						
2 7 T-4-1 -61 6 1 1 1 1-		-			•	

3.7 Total of hours for individual study	55
3.9 Total of hours per semester	125
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the curriculum	Minimum knowledge regarding the theory of the electromagnetic field,
	the constituent elements of the electrical circuits and the way of their
	operation in stationary and permanent sinusoidal regime.
4.2 related to skills	Knowledge of electricity

5. Conditions (where applicable)

5.1. for the development of	The course can be taken face-to-face or online. The course takes place in
the course	the amphitheater with modern techniques available: Video projector,
	Blackboard, Free speech.
5.2.for the development of	The seminar / laboratory can be held face-to-face or online. The seminar
the academic	discusses theoretical aspects of the course and their applications with
seminary/laboratory/project	personal contributions of students. The practical applications will be made
	using the modern working means existing in the Electrical Engineering
	laboratory (Experimental stands, DEGEM workstations, high-performance
	and current measuring devices, modeling software, etc.). Students come
	with the observed laboratory work Attendance is mandatory at all
	laboratories It will be possible to recover 2 laboratory works during the
	semester; The frequency of laboratory hours below 80% leads to the
	restoration of the discipline / -

6. Spec	ific ski	lls acquired
	•	C1. Operating with scientific, engineering and computer science fundamentals
IIs	•	C1.1 Adequate use in professional communication of the concepts of computability,
skills		complexity and modeling of electrical circuits in computer systems and communications
nal	•	C1.2 Use of specific theories and tools (algorithms, diagrams, models, etc.) to explain the
ssio		operation and structure of electrical circuits and solve electromagnetic field problems
Professional		encountered in practical applications.
Pro	•	C1.3 Use of professional numerical analysis programs for the numerical solution of
		electrical circuits in different operating modes.
11	•	CT1 Honorable, responsible, ethical conduct in the spirit of the law to ensure the reputation
erss Is		of the profession
Transversal skills		
Fra		

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)					
7.1 The general objective of the subject	 The course "Electrical Circuit Theory II" aims to continue the presentation of electromagnetic phenomena in terms of applications in technology. This course is addressed to students in the field of Electrical Engineering, specializing in Electromechanics; The discipline also tries to form the following attitudinal competencies: manifesting a positive and responsible attitude towards the scientific field / optimizing and exploiting one's own potential in scientific activities / involvement in promoting scientific innovations / engaging in partnerships with others / participating in one's own development professional. 				
7.2 Specific objectives	 The objectives of the discipline are to know and understand the basic relationships of non-sinusoidal periodic circuits, three-phase electrical circuits and transient electrical circuits, by explaining and interpreting the behavior of electrical circuits, performing calculations and determinations in electrical circuits, experimental verification of relationships basic for physical systems encountered in industrial practice, simulation of the operation of electrical circuits with specialized software; The activity at the seminar is focused on applications specific to the chapters taught in the course and aims at the formation of some calculation skills; The activity in the laboratory is focused on applications specific to the chapters taught in the course and aims at the experimental verification of the basic relations for the physical systems encountered. Carrying out laboratory work offers, in addition to the formation of skills in the electrical field, the use of physical and numerical modeling, sizing of assemblies, the correct use of measuring equipment, evaluation of errors in experimental determinations performed. 				

8. Contents*

8.1 Course	Teaching methods	No. of hours/
		Observations
Course 1.	Laptop, video projector, IQ	3

CHAPTER.1. LINEAR ELECTRICAL CIRCUITS IN PERIODIC NON-UNUSUAL REGIME 1.1. Periodic non-sinusoidal regime. Generalities. 1.2. Decomposition of periodic functions into Fourier series 1.3. Actual and average values of periodic functions. 1.4. Coefficients characteristic of periodic functions	Board, free speech	
Course 2 1.5. Calculation of networks in periodic non-sinusoidal regime by decomposition into harmonics. Non-sinusoidal voltage resistor. Voltage coil at non-sinusoidal terminals. Voltage capacitor at non-sinusoidal terminals. RLC circuits live at non-sinusoidal terminals	Laptop, video projector, IQ Board, free speech	3
Course 3 1.6. Calculation of the current in decomposed form. 1.7. Non-sinusoidal powers 1.8. Three-phase circuits in periodic non-sinusoidal regime	Laptop, video projector, IQ Board, free speech	3
Course 4 CHAPTER.2. THREE-PHASE ELECTRICAL CIRCUITS 2.1. Three-phase circuits and systems. Overview 2.2. Production of a symmetrical three-phase system of electromotive voltages	Laptop, video projector, IQ Board, free speech	3
Course 5 2.3. Three-phase circuit connections. Star connection of three-phase circuits. Triangle connection of three-phase circuits. 2.4. Three-phase star-connected receivers with neutral conductor	Laptop, video projector, IQ Board, free speech	3
Course 6 2.5. Three-phase star-connected receivers without a neutral conductor 2.6. Three-phase circuits connected in a triangle 2.7. Three-phase circuits powered by three-phase asymmetric voltage systems	Laptop, video projector, IQ Board, free speech	3
Course 7 2.8. Electric power in three-phase electrical circuits CHAPTER 3. TRANSITIONAL LINEAR ELECTRICAL CIRCUITS 3.1. Overview	Laptop, video projector, IQ Board, free speech	3
Course 8 3.2. The direct method. RL series circuits in transient mode. RC series circuits in transient mode. Transient RLC series circuits. Transiently branched RLC circuits	Laptop, video projector, IQ Board, free speech	3
Course 9 3.3. Laplace transform method. Laplace transform. Laplace transform theorems. Some details regarding the application of the Laplace transform in the study of electrical circuits	Laptop, video projector, IQ Board, free speech	3
Course 10 3.4 Operational form of equations of electrical circuits. Operational impedances. Networks in null initial conditions. Networks in non-zero initial conditions. The response of a passive linear dipole circuit to an input signal u(t)	Laptop, video projector, IQ Board, free speech	3
Course 11	Laptop, video projector, IQ	3

CHAPTER.4. ELECTRIC QUADRUPLE THEORY 4.1.	Board, free speech	
Definitions. Classification 4.2. Quadripole equations;		
Course 12		3
4.3. The transition from one system of quadrilateral		
equations to another;		
4.4. Interconnection of quadripoles. Chain		
connection. Parallel connection. Parallel-to-parallel		
connection Parallel-to-serial connection.		
Course 13		3
4.5. Equivalent schemes of the quadripole;		
4.6. Hollow and short circuit interconnection of the		
quadrupole.		
Course 14		3
4.7. Characteristic impedance and constant propagation of		
the symmetric quadrupole;		
4.8. Electric frequency filters. Filter pass intervals.		
Determ. Crossing limits of some filters.		

Bibliography

- 1. Hathazi Francisc Ioan Teoria circuitelor electrice II Note de curs;
- 2. Balabanian, N., Bickart, T. Teoria modernă a circuitelor, Ed.Tehnică, București, 1975;
- 3. Leuca, T. Electrotehnică și mașini electrice, Litografia Universității din Oradea, 1992;
- 4. Leuca, T., Molnar Carmen Circuite electrice. Aplicații utilizând tehnici informatice, Ed. Univ. din Oradea, 2002;
- 5. Maghiar, T., Leuca, T. Culegere de probleme de electrotehnică, vol.I, Lit. Univ. Oradea, 1992;
- 6. Maghiar, T., Leuca, T. Culegere de probl. de electrotehnică, vol.II, vol.III, Lit. Univ. Oradea, 1992, 1993.;
- 7. Mocanu, C. I. Teoria câmpului electromagnetic, Ed. Didactică și Pedagogică, București, 1981;

8. Şora, C. - Bazele electrotehnicii, Ed. Didactică și Pedagogică, București, 1982.

8.2 Seminar	Teaching methods	No. of hours/
1 7 1	T 1 / C	Observations
1. Linear electrical circuits in periodic non-sinusoidal	Free speech / use of	4
regime	blackboard	
2. Three-phase electrical circuits	Free speech / use of	4
	blackboard	
3. Transient linear electrical circuits. The direct method.	Free speech / use of	2
	blackboard	
4. Transient linear electrical circuits. Laplace transform	Free speech / use of	4
methods	blackboard	
8.2 Laboratory	Teaching methods	No. of hours/
·		Observations
1. Theoretical notions of protection and security.	Free speech	2
2. The study of the resonance phenomenon in the case of	Free speech, experimental	2
linear electrical circuits in periodic sinusoidal regime	stand use and measuring	
,	devices	
3. Study of linear electrical circuits in periodic non-	Free speech, use of	2
sinusoidal regime	numerical analysis programs	
	from the laboratory	
	equipment	
4. Three-phase electrical circuits	Free speech, use of	2
	experimental stand and	
	measuring devices from the	
	laboratory equipment	
5. Study of three-phase circuits connected in a star fed by	Free speech, use of	2
symmetrical line voltages	experimental stand and	
	measuring devices from the	
	laboratory equipment	
6. Study of three-phase circuits connected in a triangle	Free speech, use of	2
powered by symmetrical line voltages	experimental stand and	

	1	
	measuring devices from the	
	laboratory equipment	
7. Determining the sequence of phases	Free speech, use of	2
	experimental stand and	
	measuring devices from the	
	laboratory equipment	
8. Study of the transient regime in RL circuits	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
9. Study of the transient regime in RC circuits	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
10. Transient mode in RLC circuits	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
11. Study of filters for symmetrical components	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
12. Study of electricity transmission in wireless systems	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
13. Verification of knowledge	Free speech, use of	2
<u> </u>	numerical analysis programs	
	from the laboratory	
	equipment	
14. Verification of knowledge	Free speech, use of	2
	numerical analysis programs	
	from the laboratory	
	equipment	
Diblic combo		

Bibliography

- 1. Rădulet, R. Bazele electrotehnicii, Probleme, vol. I,II,III, Ed. Did. si Ped., Bucuresti, 1981.
- 2. Leuca, T., Maghiar, T. Electrotehnică, Probleme, vol.IV, Litografia Univ. din Oradea, 1994.
- 3. Arion Mircea Note de seminar În curs de apariție
- 4. Leuca, T. Bazele electrotehnicii îndrumător de laborator, litografiat Univ. din Oradea, 1991
- 5. Molnar Carmen, Arion M. Electrotehnică. Aplicații practice Editura Universității din Oradea, 2003.
- 6. Arion Mircea Teoria circuitelor electrice II Notițe de Laborator în curs de apariție;

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is adapted and satisfies the requirements imposed on the labor market, being agreed by the social partners, professional associations and employers in the field related to the license program. The content of the discipline is found in the curriculum of the Electromechanics specialization and from other university centers in Romania that have accredited this specialization, so the knowledge of the basic notions is a stringent requirement of the employers in the field. For a better adaptation to the requirements of the labor market of the content of the discipline, meetings were held both with representatives of the business environment and with teachers from pre-university education.

10. Evaluation

Type of activity 10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
---	-------------------------	-----------------------

			final mark
10.4 Course	Oral examination	The evaluation can be	75 %
		done face-to-face or	
		online. Oral examination	
		of students	
10.5 Seminar	Final evaluation test	The evaluation can be	15%
		done face-to-face or	
		online. Oral assessment -	
		test, report.	
10.6 Laboratory	Final evaluation test	The evaluation can be	10 %
		done face-to-face or	
		online. Oral assessment -	
		test, report.	

10.8 Minimum performance standard:

• Carrying out the works under the coordination of a teacher, in order to solve specific problems in the electrical field with the correct evaluation of the workload, resources available for the necessary time to complete the risks, under the conditions of application of occupational safety and health norms.

Completion date:

28.08.2022

Date of endorsement in the

department:

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Date despre program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Date despre disciplină

2.1 Name of the s	ubject	t	Boı	nd gr	aphs in electrotehnics			
2.2 Holder of the	subje	et	Co	nf.dr.	ing. Grava Adriana			
2.3 Holder of the	acade	mic	Co	nf.dr.	ing. Grava Adriana			
seminar/laborator	y/proj	ect						
2.4 Year of	II	2.5 Semeste	er	3	2.6 Type of the	VP	2.7 Subject regime	DS
study					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	1
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time				58	
Study using the manual, course support, bibliography and handwritten notes			18		
Supplementary documentation using the library, on field-related electronic platforms and in field-			18		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			14		
Tutorials			2		
Examinations					4
Other activities.					2

3.7 Total of hours for	58
individual study	
3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 Related to the	Physics, Theory of electrical circuits
curriculum	
4.2 Related to skills	Elements of electrical circuit, knowledge of physics phenomena and the laws of electrical engineering and physics, series and parallel connection of electrical circuits

5. Conditions (where applicable)

5.1. for the development of the	The course could be physically or online
course	
5.2.for the development of the	Seminary could be physically or online
academic	
seminary/laboratory/project	

6. Spe	cific skills acquired
Competente profesionale	C2. Use of fundamental concepts of computer science and information technology C3. Use of fundamental knowledge of electrotechnics
Competențe transversale	Identify roles and responsibilities in a multidisciplinary team and apply effective relationship and work techniques within the team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	Within this discipline, students are presented with basic notions regarding the modeling of physical systems and in particular of electrical circuits and electromechanical systems, with the help of bond graphs. These are a way to model any physical system, no matter how complex, so it is possible to analyze it as a unique system. The use of bond graphs has the advantage that it allows the unitary modeling of a multidisciplinary physical system, allowing the study of any complex physical system, resulting from the interconnection of physical systems of different nature.
7.2 Specific objectives	After completing the discipline "Bond graphs in electrotehnics", the student can model any multidisciplinary physical system and can analyze it with a single simulation tool, such as the 20 SIM program. Compared to other simulation programs, this program has the advantage that it is possible to obtain data on quantities from different domains of the analyzed system, being able to study the system as a unique system.

8. Contents*

8.1 Course	Teaching methods	No. of hours/
1. The elements of bond graphs The procedure of modeling electrical systems that are in stationary regime with the help of bond graphs.	Video projector, presentation, discussion or online	Observations 2h
2. The procedure of construction and modeling of electrical systems that are in alternating sinusoidal regime with the help of bond graphs.	Video projector, presentation, discussion or online	2h
3. Procedure for construction and modeling of bond graphs for three-phase electrical systems. Examples	Video projector, presentation, discussion or online	2h
4. Comparison of the results of electrical circuits that are in permanent sinusoidal regime solved using Kirchhoff's theorems with simulation results using the bond graphs and the simulation program 20 SIM	Video projector, presentation, discussion or online	2h
5. Comparison of the results of some electrical circuits that are in permanent sinusoidal regime solved using the theorem of cyclic currents with simulation results using the bond graphs and the simulation program 20 SIM	Video projector, presentation, discussion or online	2h
6. Comparison of the results of some electrical circuits that are in permanent sinusoidal regime solved using the theorem of the potentials at nodes with simulation results using the bond graphs and the simulation program 20 SIM	Video projector, presentation, discussion or online	2h
7. Causality on active elements and jonction elements.	Video projector, presentation, discussion or online	2h
8. Causal loops. Causal ways.	Video projector, presentation, discussion or online	2h
9. Transmittance of active, passive elements, circuit transmittance. Mason's rule.	Video projector, presentation, discussion or online	2h
10. Frequency analysis of single-phase electrical circuits in alternating sinusoidal regime, using bond graphs using the 20 SIM simulation program	Video projector, presentation, discussion or online	2h
11. Frequency analysis of three-phase alternating sinusoidal electrical circuits using connection graphs using the 20 SIM simulation program	Video projector, presentation, discussion or online	2h

12. Calculation of transmittances for three-phase circuits applying Mason's Rule, using bond graphs	Video projector, presentation, discussion or online	2h
13. Modeling of electrical circuits that are in non-sinusoidal regime with the help of bond graphs	Video projector, presentation, discussion or online	2h
14. Calculation of transmittances for circuits that are in non-sinusoidal regime with the help of connection graphs Examples	Video projector, presentation, discussion or online	2h

Bibliografie

- 1. Gawthrop P.J. "Bond graphs and dynamics system", London Prentice Hall, 1996;
- 2. Gawthrop P.J. "Physical Interpretation of inverse dynamic using bond graphs", The Bond graphs Digest, 2 (1), 1998;
- 3. Grava A. "Grafuri de legătură în electrotehnică", Editura Universității din Oradea, 2004;
- 4. Grava A. "Grafuri de legătură în electrotehnică Aplicații", Editura Universității din Oradea 2009;
- 5. Grava A. www.agrava.webhost.uoradea.ro;
- 6. Grellet G. "Actionneurs électriques: principes, modèles, commandes", Paris, Eyrolles, 1997;
- 7. Karnopp D., Rosenberg R. "System dynamics: a unified approach", John Willey, New-York, Second edition, 1991;
- 8. Scavarda S., Dauphin-Tanguy G. ş.a "Les bond-graphs" Editura Hermes, 2000;
- 8. Şora, C. "Bazele electrotehnicii", Ed. Didactică și Pedagogică, București, 1982.

8.2 Laboratory	Teaching methods	No. of hours/ Observations
1.The procedure of construction and modeling of electrical systems that are in alternating sinusoidal regime with the help of bond graphs.	Simulasion or online simulation	2h
2. Comparison of the results of electrical circuits that are in permanent sinusoidal regime solved using Kirchhoff's theorems with simulation results using the bond graphs and the simulation program 20 SIM	Simulation or online simulation	2h
3. Comparison of the results of some electrical circuits that are in permanent sinusoidal regime solved using the theorem of cyclic currents with simulation results using the bond graphs and the simulation program 20 SIM	Simulasion or online simulation	2h
4. Comparison of the results of some electrical circuits that are in permanent sinusoidal regime solved using the theorem of the potentials at nodes with simulation results using the bond graphs and the simulation program 20 SIM	Simulasion or online simulation	2h

5. Transmittance of active, passive elements, circuit transmittance. Mason's rule.	Simulasion or online simulation	2h
6. Frequency analysis of single-phase electrical circuits in alternating sinusoidal regime, using bond graphs using the 20 SIM simulation program	Simulasion or online simulation	2h
7. Frequency analysis of three-phase alternating sinusoidal electrical circuits using connection graphs using the 20 SIM simulation program	Simulasion or online simulation	2h
8.4 Project		

Bibliografie

- 1. Gawthrop P.J. "Bond graphs and dynamics system", London Prentice Hall, 1996;
- 2. Gawthrop P.J. "Physical Interpretation of inverse dynamic using bond graphs", The Bond graphs Digest, 2 (1), 1998;
- 3. Grava A. "Grafuri de legătură în electrotehnică", Editura Universității din Oradea, 2004;
- 4. Grava A. "Grafuri de legătură în electrotehnică Aplicații", Editura Universității dir Oradea, 2009;
- 5. Grava A. www.agrava.webhost.uoradea.ro;
- 6. Grellet G. "Actionneurs électriques: principes, modèles, commandes", Paris, Eyrolles, 1997.
- 7. Karnopp D., Rosenberg R. "System dynamics: a unified approach", John Willey, New-York, Second edition, 1991;
- 8. Scavarda S., Dauphin-Tanguy G. ş.a "Les bond-graphs" Editura Hermes, 2000;
- 8. Şora, C. "Bazele electrotehnicii", Ed. Didactică și Pedagogică, București, 1982.

9. Corroborating the contents of the discipline with the expectations of the representatives of	i the
epistemic community, professional associations and representative employers in the field related to	o the
program	

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course		Paper - oral or online presentation The evaluation can be done face to face or online	50%
10.5 Laboratory	Laboratory Activity	Oral or online simulation presentation The evaluation can be done face to face or online	50%

10.7 Project

 $10.8\,$ Minimum performance standard: Carrying out a work / project, responsibly performing tasks specific to the role in a multidisciplinary team

Final Periodic Verification (VPF) Seminar (S), Laboratory(L), Project (P).

Grade calculation formula N = 50% Ex + 50% S;

Condition for obtaining loans:: $N \ge 5$; $S = \ge 5$; $L = \ge 5$; $P = \ge 5$.

Signature of the course holder

Conf.univ.dr.ing. Grava Adriana Marcela

Completion date: 28.08.2022

ite:

Date de contact:

Cod poștal: 410087, Oradea, jud.Bihor, Romania Tel.: 0259 / 410.667, e-mail: agrava@uoradea.ro Signature of the laboratory holder

Conf.univ.dr.ing. Grava Adriana Marcela

Date de contact:

Cod poștal: 410087, Oradea, jud.Bihor, Romania Tel.: 0259 / 410.667, e-mail: agrava@uoradea.ro

Signature Departament Directory

Date of endorsement in the department:

01.09.2022

Prof.univ.dr.ing.inf. Francisc – Ioan Hathazi

Date de contact:

Tel.: 0259 / 410.172, e-mail: ihathazi@uoradea.ro Pagina web: http://ihathazi.webhost.uoradea.ro/

Dean's Signature

prof.univ.dr.ing. Ioan – Mircea Gordan

Date of endorsement in the department:

22.09.2022

Date de contact:

Tel.: 0259 / 410.204, e-mail: mgordan@uoradea.ro Pagina web: http://mgordan.webhost.uoradea.ro/

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		Numerical Methods				
2.2 Holder of the su	ıbjec	t	Lecturer PhD eng. Novac Cornelia Mihaela				
2.3 Holder of the academic seminar/laboratory/project			Lectu	rer PhD eng. Nova	ac Cornelia M	Iihaela	
2.4 Year of study	2	2.5 Semester	3	2.6 Type of the evaluation	Ex	2.7 Subject regime	Specialized Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	6	of which: 3.2	2	3.3 academic	2/2
		course		seminar/laboratory	
3.4 Total of hours from the curriculum	84	Of which: 3.5	28	3.6 academic	28/28
		course		seminar/laboratory/project	
Distribution of time					66
					hours
Study using the manual, course support, bibliography and handwritten notes					20
Supplementary documentation using the library, on field-related electronic platforms and in field-					16
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14
Tutorials					10
Examinations 4					4
Other activities.					2

3.7 Total of hours for	66
individual study	
3.9 Total of hours per	150
semester	
3.10 Number of credits	6

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) - Computer skills, linear algebra and mathematical analysis
4.2 related to skills	-

5. Conditions (where applicable)

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- Personal computers with dedicated software programs (Matlab);
the academic	- Students presence to all laboratory hours is compulsory
seminary/laboratory/project	- The laboratory hours can be carried out face to face or online

6. Spec	ific skills acquired
Professional skills	C1. Aplicarea adecvată a cunoștințelor fundamentale de matematică, fizică, chimie specifice domeniului inginerie electrica C2. Operarea cu concepte fundamentale din știința calculatoarelor și tehnologia informației
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

The objectives	of the discipline (resulting from the grid of the specific competences acquired)			
7.1 The	■ The discipline "Numerical methods" aims to familiarize students with the features of			
general	the basic principles of numerical methods; the practical interpretation of the formulas			
objective of	from the methods presented with the help of a calculation system and the realization of			
the subject	some calculation programs with applications in engineering, written in the Matlab			
	programming language.			
7.2 Specific	After completing the discipline "Numerical methods", students acquire the following			
objectives	skills:			
	☐ Knowledge and adequate use of notions specific to numerical calculation;			
	☐ Understanding the content and essence of laboratory work;			
	☐ Application of numerical methods in engineering problems;			
	☐ Using the Matlab programming language for numerical calculation in engineering;			
	☐ Choosing the numerical method appropriate to each type of problem;			
	☐ Solving with the help of a calculation system the more complex engineering			
	problems, for which the analytical solutions do not exist, or are unsatisfactory.			
	■ □ Acquiring the ability to use what they have learned in this discipline in the case of a			
	rigorous and abstract approach to practical problems that may arise in further research			
	(master's, doctorate)			

8. Contents*

8.1 Course	Teaching methods	No. of hours/
		Observations
1.Matlab programming fundamentals	Interactive lecture +	2
	video projector / Online	
2. Introduction in Matlab programming.	Interactive lecture +	4
	video projector / Online	
3. Errors in numerical calculation	Interactive lecture +	2
	video projector / Online	
4. Numerical methods to solve algebric linear systems	Interactive lecture +	2
equations. Exact methods.	video projector / Online	
5. Numerical methods to solve algebric linear	Interactive lecture +	2
systems equations. Iterative methods.	video projector / Online	
6. Numerical methods to solve nonlinear equations	Interactive lecture +	2
	video projector / Online	
7. Interpolation	Interactive lecture +	4
	video projector / Online	
8. Functions approximation	Interactive lecture +	2
	video projector / Online	
9.Numerical integration	Interactive lecture +	2
	video projector / Online	
10.Numerical derivation	Interactive lecture +	2
	video projector / Online	
11. Numerical methods to solve differential equations	Interactive lecture +	4

video projector / Online

Bibliography

- 1. Mihaela Novac-" Metode numerice", Editura Universității din Oradea, 2005.
- 2. Mihaela Novac, O. Novac "Metode numerice utilizând Matlab", Editura Universității din Oradea, 2003.
- 3. Mihaela Novac "Metode numerice îndrumător de laborator", Editura Universității din Oradea, 2012.
- 4. M. Ghinea, V. Firețeanu, "Matlab calculul numeric-grafică-aplicații.", Editura Teora, 1997.
- 5. I.A Viorel,D. M. Ivan "Metode numerice cu aplicații în ingineria electrică", Editura Universității din Oradea, 2000.
- 6. Mihaela Novac *Metode numerice utilizând MatLAB : pentru ingineri* Editura Universității din Oradea, 2014

8.2 Laboratory	Teaching methods	No. of hours/
		Observations
1. Using the Matlab programming environment	Application programs using Matlab	2
2. Build function files in Matlab	Application programs using Matlab	2
3. Using the Matlab graphics environment. Building 2D and 3D graphics.	Application programs using Matlab	2
4. Programs for solving algebric linear systems equations. Exact methods.	Application programs using Matlab	4
5. Programs for solving algebric linear systems equations. Iterative methods	Application programs using Matlab	2
6. Matlab programs for polynomial interpolation	Application programs using Matlab	2
7. Functions approximation. Matlab programs for linear regression and polynomial regression.	Application programs using Matlab	4
8. Matlab programs for solving nonlinear equations	Application programs using Matlab	2
9. Matlab programs for solving numerical derivation	Application programs using Matlab	2
10. Matlab programs for solving numerical integration	Application programs using Matlab	2
11. Matlab programs for solving differential equations	Application programs using Matlab	2
12. Evaluation of laboratory activity.		2

Bibliography

- 1. Mihaela Novac-" Metode numerice utilizând Matlab pt. ingineri", Editura Universității din Oradea, 2014
- 2. Mihaela Novac-" Metode numerice", Editura Universității din Oradea, 2005.
- 3. Mihaela Novac, O. Novac "Metode numerice utilizând Matlab", Editura Universității din Oradea, 2003.
- 4. Mihaela Novac "Metode numerice îndrumător de laborator", Editura Universității din Oradea, 2012.
- 5. M. Ghinea, V. Firețeanu, "Matlab calculul numeric-grafică-aplicații.", Editura Teora, 1997.
- 6. I.A Viorel, D. M. Ivan "Metode numerice cu aplicații în ingineria electrică", Editura Universității din Oradea, 2000.

8.3 Seminar	Teaching methods	No. of hours/ Observations
1.Study topics and bibliography. Guidelines for testing knowledge in seminar activities	Free presentation, with exemplification on the board. Interactive method.	2

2. Errors in numerical calculation. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	2
3. Numerical methods to solve algebric linear systems equations. Exact methods. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	4
4. Numerical methods to solve algebric linear systems equations. Iterativet methods .Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	2
5. Numerical methods to solve nonlinear equations. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	4
6. Interpolation. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	2
7. Functions approximation. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	2
8. Numerical integration. Applications.	Free presentation, with exemplification on the board. Interactive method.	2
9. Numerical derivation. Applications.	Free presentation, with exemplification on the board. Interactive method.	2
10. Numerical methods to solve differential equations. Examples and applications.	Free presentation, with exemplification on the board. Interactive method.	2
11. Evaluation		2

- 1. Mihaela Novac-" Metode numerice", Editura Universității din Oradea, 2005.
- 2. Mihaela Novac, O. Novac "Metode numerice utilizând Matlab", Editura Universității din Oradea, 2003.
- 3. Mihaela Novac "Metode numerice îndrumător de laborator", Editura Universității din Oradea, 2012.
- 4. M. Ghinea, V. Firețeanu, "Matlab calculul numeric-grafică-aplicații.", Editura Teora, 1997.
- 5. I.A Viorel, D. M. Ivan "Metode numerice cu aplicații în ingineria electrică", Editura Universității din Oradea, 2000.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accomodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the		
			final mark		
10.4 Course	Exam	Oral examination practical computer applications / Online Assessment (Online questionnaire)	70 %		
10.5 Seminar	Realization of all seminar applications	Continuous testing of the theory throughout the semester	15%		
10.6 Laboratory	Realization of all laboratory applications	Practical application	15 %		
10.8 Minimum performance standard:					

Completion date: 29.08.2022

Date of endorsement in the department: 1.09.2022

Date of endorsement in the Faculty Board: 23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	ELECTROMECHANICS / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			EL	ELECTRIC AND ELECTRONIC MEASUREMENTS I				
2.2 Holder of the subject			Pro	Prof. univ. dr. ing. habil. IOAN MIRCEA GORDAN				
2.3 Holder of the academic seminar/laboratory/project			As	ist. u	niv. dr. ing. MARIUS (CODR	EAN	
2.4 Year of study	II	2.5 Semesto	er	3	2.6 Type of the evaluation	EX.	2.7 Subject regime	FD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
_		course		-	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time					94
					hours
Study using the manual, course support, bibliography and handwritten notes					39
Supplementary documentation using the library, on field-related electronic platforms and in field-					20
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					25
Tutorials					-
Examinations					10
Other activities.					-

3.7 Total of hours for individual study	94
3.9 Total of hours per semester	150
3.10 Number of credits	5

4. Pre-requisites (where applicable)

10 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	to approducto/
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	video projector presentation
the course	
5.2.for the development of	The existence of the apparatus and equipment necessary for the development in
the academic	optimal conditions of the works provided in the discipline file.
seminary/laboratory/project	Providing students with the laboratory guide in printed or electronic format.
6. Specific skills acquired	

	 C4. Design of electrical systems and their components
	- Adequate description of the basic concepts and principles of measurement techniques and data acquisition
	specific to electrical engineering.
	- Explaining the means and methods of measurement, as well as the operation of instruments, devices and
	installations for measuring various technical quantities.
	- Application of the basic principles of measurement technique and data acquisition for determining
	electrical and non-electrical quantities in electromechanical systems.
	- Appropriate use of measuring devices and data acquisition systems for performance evaluation and
	monitoring of electromechanical systems.
	 Design of electromechanical installations including measuring devices and digital data acquisition systems. C6. Diagnosis, troubleshooting and maintenance of electrical systems and
IIS	S ,
ski	components.
al	- Defining the basic concepts regarding the operation and maintenance of electromechanical systems Identification and selection of components for operation, maintenance and integration in electromechanical
Professional skills	systems.
ess	- Commissioning, operation test, fault analysis and troubleshooting of electromechanical systems.
Jo.	- The use of methods and technical means to increase the reliability of electromechanical systems.
P ₁	- Elaboration of maintenance and repair plans for electromechanical installations.
sal	
ver	
Transversal skills	
Trans	
T	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives	s of the discipline (resulting from the grid of the specific competences acquired)
7.1 The general	The course is taught to second year <i>Electromechanics</i> students. The course addresses notions that will allow future graduates to have a rich background on the use of techniques for
objective of	measuring electrical and non-electrical quantities and data acquisition systems in
the subject	electromechanical systems.
7.2 Specific	Explaining and interpreting the phenomena presented in the field and specialty disciplines,
objectives	using the basic knowledge of mathematics, physics, chemistry
v	 Application of general scientific rules and methods for solving problems specific to electrical engineering
	Explanation and interpretation of the operating modes of static, electromechanical converters,
	of electrical and electromechanical equipment
	 Identification of electromechanical systems according to their composition mathematical
	modeling, as well as their kinematic and dynamic description
	 Adequate description of the basic concepts and principles of electrical engineering
	measurement and data acquisition techniques
	Explanation of the means and methods of measurement, as well as the operation of
	instruments, devices and installations for measuring various technical quantities
	Application of the basic principles of measurement technique and data acquisition for
	determining electrical and non-electrical quantities in electromechanical systems.
	Appropriate use of measuring devices and data acquisition systems for performance
	evaluation and monitoring of electromechanical systems.
	Design of electromechanical installations including measuring devices and digital data
	acquisition systems.
	Developing a positive attitude towards the activities of assimilating new professional
	knowledge and information, cultivating and promoting a scientific environment focused on
	values, forming a positive and responsible professional behavior.

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
Chapter I INTRODUCTION 1.1. The object of the science of measurement 1.2. Classification of measurable quantities 1.3. The legal system of units of measurement 1.4. Standards	Interactive lecture; exposure; video projector presentation	2 hours
Chapter II ELECTRICAL METHODS AND MEASURES. METROLOGICAL CHARACTERISTICS	Interactive lecture; exposure; video projector presentation	4 hours

3.1. The measurement process		
3.2. Classification of electrical measurement methods		
3.3. Hierarchy of electrical measurement methods		
3.4. Definition of electrical measuring instruments		
3.5. Functional diagrams of electrical measuring instruments		
3.6. Metrological characteristics of electrical measuring instruments		
Chapter III MEASUREMENT ERRORS	Interactive lecture; exposure;	4 hours
2.1. Classification of measurement errors	video projector presentation	
2.2. Estimation of random errors		
2.3. Estimation of systematic errors		
2.4. Estimation of total errors for indirect measurement methods		
2.5. Processing and presentation of measurement results		
2.6. Informational interpretation of measurement errors		
Chapter IV MEASURING MEANS IN DYNAMIC REGIME	Interactive lecture; exposure;	4 hours
4.1. Overview	video projector presentation	
4.2. Typical behaviors of measuring instruments		
Chapter V ANALOGUE MEASURING MEASURES	Interactive lecture; exposure;	6 hours
5.1. Principles of operation of electromechanical instruments	video projector presentation	
5.2. Constructive elements of electromechanical instruments		
Chapter VI. PROCESSING OF ANALOG SIGNALS	Interactive lecture; exposure;	4 hours
6.1. shunt	video projector presentation	
6.2. Additional resistor		
6.3. Voltage dividers		
6.4. Measuring transformers		
6.5. Measuring amplifiers		
Chapter VII. DIGITAL MEASURERS	Interactive lecture; exposure;	4 hours
7.1. Working principle and characteristics of digital devices	video projector presentation	
7.2. Components of digital devices		
7.3. Digital display devices		
D'11' 1		

- 1. Gordan M., Măsurări electrice în electrotehnică, Ed. Universității din Oradea, 2003.
- 2. Gordan M., Măsurări electrice și sisteme de măsurare, Ed. Universității din Oradea, 2001.
- 3. Gordan M. Măsurări electrice și electronice, Ed. Universității din Oradea, 1999.
- 4. Gordan M. Măsurări electrice și electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de măsură și control, Ed. Universității din Oradea, 2003.
- 6. Gordan M. Măsurări electrice și electronice Curs format electronic POSDRU DIDATEC 2013, p.291;
- 7. Vaibhavi A. Sonetha, Electrical and Electronic Measurement, 2019
- 6. Ignea, A, Stoiciu, D., Măsurări electronice, senzori si traductoare, Editura Politehnica, Timisoara, 2007
- 7. Pawan Chandani, Electrical Measurements and Instrumentation, 2017.
- 8. E. Nicolau și colectiv Manualul inginerului electronist, E.T. București 1980.
- 9. Tânovan I. G., Metrologie electrică și instrumentație, Ed. Mediamira Cluj Napoca 2003.
- 10. Ciocârlea-Vasilescu, A., M. Constantin, Neagu I., Tehnici de măsurare în domeniu, București, Ed. CD PRESS 2007.
- 11. C. Mich-Vancea, I.M. Gordan Traductoare, interfețe și Achiziții de date, Note de curs, Ed. Universității din Oradea 2010.
- 12. Ștefănescu C., Cupcea N., Sisteme inteligente de măsurare și control, Ed. Albastră Cluj-Napoca 2002.
- 12. Gordan M. și colab. Măsurări electrice în electrotehnică Îndrumător de laborator, Ed. Universității din Oradea, 2003.
- 13. Gordan M., Tomșe M., Măsurări în energetică Îndrumător de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tomse M., Măsurări electrice și electronice Îndrumător de laborator, Lito Univ. din Oradea, 1997.

11. Gordan II., Tonişe II., Masaran electrice şi electronice inaramator a	e imperiment, Erre erritt um eruurut, 199	, .
8.2 Academic seminar	Teaching methods	No. of hours/
		Observations
8.3 Academic laboratory		
1. Presentation of the content and requirements required for the	Practical application. Discussions	2 hours
proper conduct of laboratory work.		
2. Estimation of measurement errors and interpretation of results.	Practical application. Discussions	2 hours
3. Metrological verification of indicator measuring instruments.	Practical application. Discussions	2 hours
Part I.		
4. Metrological verification of indicator measuring instruments.	Practical application. Discussions	2 hours
Part II.		
5. Metrological verification of digital voltmeters.	Practical application. Discussions	2 hours
6. Metrological verification of the current transformers.	Practical application. Discussions	2 hours
7. Checking the cathode ray oscilloscope.	Practical application. Discussions	2 hours

8. Measurement of voltages and currents. Part I.	Practical application. Discussions	2 hours
9. Measurement of voltages and currents. Part II.	Practical application. Discussions	2 hours
10. Real-time oscilloscope measurements.	Practical application. Discussions	2 hours
11. DC voltage compensators.	Practical application. Discussions	2 hours
12. Measurement of resistances by volt - ammeter method.	Practical application. Discussions	2 hours
13. Measuring resistances with simple direct current bridge.	Practical application. Discussions	2 hours
14. Recovery of laboratories. Ending the school situation.	Practical application. Discussions	2 hours
8.4 Academic project		

- 1. Gordan M., Măsurări electrice în electrotehnică, Ed. Universității din Oradea, 2003.
- 2. Gordan M., Măsurări electrice și sisteme de măsurare, Ed. Universității din Oradea, 2001.
- 3. Gordan M. Măsurări electrice și electronice, Ed. Universității din Oradea, 1999.
- 4. Gordan M. Măsurări electrice și electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de măsură și control, Ed. Universității din Oradea, 2003.
- 6. Iliescu C., Ionescu-Golovanov C., și alții Măsurări electrice și electronice, E.D.P. București 1983.
- 7. G. Ionescu Măsurări și traductoare, E.D.P. București 1985.
- 6. Kishore K. Lal, Electronic Measurement and Instrumentation, PEI, 2009.
- 7. F. Auty, J. Williams, R. Stubins Beginner's Guide to Measurement in Electronic and Electrical Engineering. NPL, 2014.
- 8. E. Nicolau și colectiv Manualul inginerului electronist, E.T. București 1980.
- 9. Tânovan I. G., Metrologie electrică și instrumentație, Ed. Mediamira Cluj Napoca 2003.
- 10. Tiron M.- Teoria erorilor de măsurare și metoda celor mai mici pătrate. E.T. București 1972.
- 11. Pop E., Stoica V., Nafornița I., Petriu E., Tehnici moderne de măsurare, Ed. Facla Timișoara 1983.
- 12. Ștefănescu C., Cupcea N., Sisteme inteligente de măsurare și control, Ed. Albastră Cluj-Napoca 2002.
- 12. Gordan M. și colab. Măsurări electrice în electrotehnică Îndrumător de laborator, Ed. Universității din Oradea, 2003.
- 13. Gordan M., Tomșe M., Măsurări în energetică Îndrumător de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tomșe M., Măsurări electrice și electronice Îndrumător de laborator, Lito Univ. din Oradea, 1997.
- 15. D. Belege, G. Gasparesc Măsurări electrice și electronice. Aplicații practice, Ed. Politehnica Timișoara, 2019.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Active participation in developed discussions. Documented arguments. Providing relevant solutions to the issues under debate. Knowledge of the basics on all topics covered.	Oral, online or written assessment Discussions. Argue.	70%
10.5 Academic seminar			
10.6 Laboratory	Written test marked with a minimum of 5. Practical realization of all the requirements imposed by the laboratory work. Well-documented arguments. Reading the required bibliography.	Written test. Practical test. Online test. Discussions. Argue.	30%
10.7 Project			

10.8 Minimum performance standard:

- obtaining a grade of 5 in each laboratory test; participation and fulfillment of all requirements imposed by each laboratory work; obtaining a grade of 5 in the course tests, as an arithmetic mean of the grades obtained in this type

	of activity. Knowledge of the basics on all the topics taught.
L	
,	

23.09.2022

Completion date: 29.08.2022

Date of endorsement in the

<u>department:</u> 01.09.2022

Date of endorsement in the Faculty
Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	ELECTROMECHANICS / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject				ECT	TRIC AND ELECTRO	ONIC	MEASUREMENTS II	
2.2 Holder of the subject			Pro	of. un	iv. dr. ing. habil. IOAN	I MIR	CEA GORDAN	
2.3 Holder of the academic seminar/laboratory/project			Asi	ist. u	niv. dr. ing. MARIUS (CODR	EAN	
2.4 Year of study	II	2.5 Semesto	er	4	2.6 Type of the evaluation	EX.	2.7 Subject regime	FD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
_		course		·	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time					48
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					15
Tutorials					-
Examinations					8
Other activities.					-

3.7 Total of hours for individual study	48
3.9 Total of hours per semester	104
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	video projector presentation
the course	
5.2.for the development of	The existence of the apparatus and equipment necessary for the development in
the academic	optimal conditions of the works provided in the discipline file.
seminary/laboratory/project	Providing students with the laboratory guide in printed or electronic format.
6. Specific skills acquired	

	 C4. Design of electrical systems and their components
	- Adequate description of the basic concepts and principles of measurement techniques and data acquisition
	specific to electrical engineering.
	- Explaining the means and methods of measurement, as well as the operation of instruments, devices and
	installations for measuring various technical quantities.
	- Application of the basic principles of measurement technique and data acquisition for determining
	electrical and non-electrical quantities in electromechanical systems.
	- Appropriate use of measuring devices and data acquisition systems for performance evaluation and
	monitoring of electromechanical systems.
	 Design of electromechanical installations including measuring devices and digital data acquisition systems. C6. Diagnosis, troubleshooting and maintenance of electrical systems and
IIS	S ,
ski	components.
al	- Defining the basic concepts regarding the operation and maintenance of electromechanical systems Identification and selection of components for operation, maintenance and integration in electromechanical
Professional skills	systems.
ess	- Commissioning, operation test, fault analysis and troubleshooting of electromechanical systems.
Jo.	- The use of methods and technical means to increase the reliability of electromechanical systems.
P ₁	- Elaboration of maintenance and repair plans for electromechanical installations.
sal	
ver	
Transversal skills	
Trans	
T	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives	s of the discipline (resulting from the grid of the specific competences acquired)
7.1 The general	The course is taught to second year <i>Electromechanics</i> students. The course addresses notions that will allow future graduates to have a rich background on the use of techniques for
objective of	measuring electrical and non-electrical quantities and data acquisition systems in
the subject	electromechanical systems.
7.2 Specific	Explaining and interpreting the phenomena presented in the field and specialty disciplines,
objectives	using the basic knowledge of mathematics, physics, chemistry
v	 Application of general scientific rules and methods for solving problems specific to electrical engineering
	Explanation and interpretation of the operating modes of static, electromechanical converters,
	of electrical and electromechanical equipment
	 Identification of electromechanical systems according to their composition mathematical
	modeling, as well as their kinematic and dynamic description
	 Adequate description of the basic concepts and principles of electrical engineering
	measurement and data acquisition techniques
	Explanation of the means and methods of measurement, as well as the operation of
	instruments, devices and installations for measuring various technical quantities
	Application of the basic principles of measurement technique and data acquisition for
	determining electrical and non-electrical quantities in electromechanical systems.
	Appropriate use of measuring devices and data acquisition systems for performance
	evaluation and monitoring of electromechanical systems.
	Design of electromechanical installations including measuring devices and digital data
	acquisition systems.
	Developing a positive attitude towards the activities of assimilating new professional
	knowledge and information, cultivating and promoting a scientific environment focused on
	values, forming a positive and responsible professional behavior.

8. Contents*

8.1 Course	Teaching methods	No. of hours/
		Observations
Chapter VIII MEASUREMENT OF ELECTRIC CURRENT AND	Interactive lecture; exposure;	6 hours
VOLTAGE	video projector presentation	
8.1. Current measurement.		
8.2. Methods and means of measuring electrical voltage.		
Chapter IX ELECTRICAL POWER MEASUREMENT	Interactive lecture; exposure;	4 hours
10.1. Introduction.	video projector presentation	
10.2. Power measurement in c. c. and c.a. single phase with		

electrodynamic wattmeter.		
10.3. Active power measurement in polyphase circuits.		
10.4. Reactive power measurement.		
Chapter X MEASUREMENT OF ELECTRICAL ENERGY	Interactive lecture; exposure;	2 hours
11.1. Generalities.	video projector presentation	
11.2. Measurement of active energy in single-phase alternating current		
circuits.		
11.3. Single phase induction meter.		
11.4. Electronic meters for measuring energy.		
Chapter XI MEASUREMENT OF ELECTRICAL ENERGY	Interactive lecture; exposure;	2 hours
11.1. Generalities.	video projector presentation	
11.2. Measurement of active energy in single-phase alternating current		
circuits.		
11.3. Single phase induction meter.		
11.4. Electronic meters for measuring energy.		
Chapter XII ARCHITECTURE OF ANALOG DATA ACQUISITION	Interactive lecture; exposure;	4 hours
AND GENERATION SYSTEMS [1]	video projector presentation	
12.1. Generalities.		
12.2. Data acquisition systems (DAS).		
12.3. Data generation systems (DGS).		
12.4. Interface techniques.		
Chapter XIII. ELECTRIC TRANSDUCERS	Interactive lecture; exposure;	6 hours
13.1. General considerations;	video projector presentation	
13.2. Resistive transducers;		
13.3. Capacitive transducers;		
13.4. Inductive transducers;		
13.5. Induction transducers;		
13.6. Thermoelectric transducers;		
13.7. Galvanomagnetic transducers;		
13.8. Photoelectric transducers;		
13.9. Piezoelectric transducers.		
Chapter XIV. CATHODIC OSCILLOSCOPE	Interactive lecture; exposure;	4 hours
14.1. Overview.	video projector presentation	
14.2. Real-time oscilloscope.		
14.3. Special oscilloscopes.		
Dibliography		

- 1. Gordan M., Măsurări electrice în electrotehnică, Ed. Universității din Oradea, 2003.
- 2. Gordan M., Măsurări electrice și sisteme de măsurare, Ed. Universității din Oradea, 2001.
- 3. Gordan M. Măsurări electrice și electronice, Ed. Universității din Oradea, 1999.
- 4. Gordan M. Măsurări electrice și electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de măsură și control, Ed. Universității din Oradea, 2003.
- 6. Gordan M. Măsurări electrice și electronice Curs format electronic POSDRU DIDATEC 2013, p.291;
- 7. Vaibhavi A. Sonetha, Electrical and Electronic Measurement, 2019
- 6. Ignea, A, Stoiciu, D., Măsurări electronice, senzori si traductoare, Editura Politehnica, Timisoara, 2007
- 7. Pawan Chandani, Electrical Measurements and Instrumentation, 2017.
- 8. E. Nicolau și colectiv Manualul inginerului electronist, E.T. București 1980.
- 9. Tânovan I. G., Metrologie electrică și instrumentație, Ed. Mediamira Cluj Napoca 2003.
- 10. Ciocârlea-Vasilescu, A., M. Constantin, Neagu I., Tehnici de măsurare în domeniu, București, Ed. CD PRESS 2007.
- 11. C. Mich-Vancea, I.M. Gordan Traductoare, interfețe și Achiziții de date, Note de curs, Ed. Universității din Oradea 2010.
- 12. Ștefănescu C., Cupcea N., Sisteme inteligente de măsurare și control, Ed. Albastră Cluj-Napoca 2002.
- 12. Gordan M. și colab. Măsurări electrice în electrotehnică Îndrumător de laborator, Ed. Universității din Oradea, 2003.
- 13. Gordan M., Tomșe M., Măsurări în energetică Îndrumător de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tomșe M., Măsurări electrice și electronice Îndrumător de laborator, Lito Univ. din Oradea, 1997.

11. Gordan 11., Tonişe 11., Masarar electrice şi electronice maramator de lasorator, Ente oniv. din Graden, 1997.					
8.2 Academic seminar	Teaching methods	No. of hours/			
		Observations			
8.3 Academic laboratory					
1. Presentation of the content and requirements required for the	Practical application. Discussions	2 hours			
proper conduct of laboratory work.					
2. Power measurement in c.c. circuits.	Practical application. Discussions	2 hours			
3. Measurement of active power and determination of consumer	Practical application. Discussions	2 hours			

characteristics in single-phase alternating current circuits.		
Measurement of active and reactive power in three-phase circuits.		
4. Active energy measurement. Checking single-phase induction	Practical application. Discussions	2 hours
meters.		
5. Study of light emitting diodes. LED displays.	Practical application. Discussions	2 hours
6. Study of liquid crystal displays.	Practical application. Discussions	2 hours
7. Analog to digital converter with dual integration.	Practical application. Discussions	2 hours
8. The study of galvanomagnetic transducers.	Practical application. Discussions	2 hours
9. Thermoelectric transducers.	Practical application. Discussions	2 hours
10. Introduction to the LabView interface program.	Practical application. Discussions	2 hours
11. Realization of a simple virtual instrument device.	Practical application. Discussions	2 hours
12. Modern measuring systems I. Acquisition boards and virtual	Practical application. Discussions	2 hours
instruments.		
13. Modern measuring systems II. Acquisitions and data	Practical application. Discussions	2 hours
generation.		
14. Recovery of laboratories. Ending the school situation.	Practical application. Discussions	2 hours
8.4 Academic project		

- 1. Gordan M., Măsurări electrice în electrotehnică, Ed. Universității din Oradea, 2003.
- 2. Gordan M., Măsurări electrice și sisteme de măsurare, Ed. Universității din Oradea, 2001.
- 3. Gordan M. Măsurări electrice și electronice, Ed. Universității din Oradea, 1999.
- 4. Gordan M. Măsurări electrice și electronice Culegere de probleme, Lito Univ. din Oradea, 1998.
- 5. Gordan M., Echipamente de măsură și control, Ed. Universității din Oradea, 2003.
- 6. Iliescu C., Ionescu-Golovanov C., si altii Măsurări electrice si electronice, E.D.P. Bucuresti 1983.
- 7. G. Ionescu Măsurări și traductoare, E.D.P. București 1985.
- 6. Kishore K. Lal, Electronic Measurement and Instrumentation, PEI, 2009.
- 7. F. Auty, J. Williams, R. Stubins Beginner's Guide to Measurement in Electronic and Electrical Engineering. NPL, 2014.
- 8. E. Nicolau și colectiv Manualul inginerului electronist, E.T. București 1980.
- 9. Tânovan I. G., Metrologie electrică și instrumentație, Ed. Mediamira Cluj Napoca 2003.
- 10. Tiron M.- Teoria erorilor de măsurare și metoda celor mai mici pătrate. E.T. București 1972.
- 11. Pop E., Stoica V., Nafornița I., Petriu E., Tehnici moderne de măsurare, Ed. Facla Timișoara 1983.
- 12. Ștefănescu C., Cupcea N., Sisteme inteligente de măsurare și control, Ed. Albastră Cluj-Napoca 2002.
- 12. Gordan M. și colab. Măsurări electrice în electrotehnică Îndrumător de laborator, Ed. Universității din Oradea, 2003.
- 13. Gordan M., Tomșe M., Măsurări în energetică Îndrumător de laborator, Lito. Univ. din Oradea, 1999.
- 14. Gordan M., Tomșe M., Măsurări electrice și electronice Îndrumător de laborator, Lito Univ. din Oradea, 1997.
- 15. D. Belege, G. Gasparesc Măsurări electrice și electronice. Aplicații practice, Ed. Politehnica Timișoara, 2019.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Active participation in	Oral, online or written	70%
	developed discussions.	assessment Discussions.	
	Documented arguments.	Argue.	
	Providing relevant		
	solutions to the issues		
	under debate. Knowledge		
	of the basics on all topics		
	covered.		
10.5 Academic seminar			
10.6 Laboratory	Written test marked with a	Written test. Practical test.	30%
	minimum of 5. Practical	Online test. Discussions.	
realization of all the		Argue.	
	requirements imposed by	_	

	the laboratory work. Well-documented arguments. Reading the required bibliography.		
10.7 Project		-	-

10.8 Minimum performance standard:

- obtaining a grade of 5 in each laboratory test; participation and fulfillment of all requirements imposed by each laboratory work; obtaining a grade of 5 in the course tests, as an arithmetic mean of the grades obtained in this type of activity. Knowledge of the basics on all the topics taught.

Completion date: 29.08.2022

Date of endorsement in the

<u>department:</u> 01.09.2022

Date of endorsement in the Faculty

Board: 23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Elect	rotechnic mate	rials		
2.2 Holder of the subject			Lectu	ırer dr.ing. Claudi	a Olimpia Stașa	ac	
2.3 Holder of the academic seminar/laboratory/project			Lecti	arer dr.ing. Claudi	a Olimpia Stașa	ac	
2.4 Year of study	2	2.5	4	2.6 Type of the	Ex -	2.7 Subject	Domain
		Semester		evaluation	Examination	regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	4	of which: 3.2	2	3.3 academic	-/2/-
			course		seminar/laboratory/project	
3.4 Total of hours from the curricul	um :	56	Of which: 3.5	28	3.6 academic	-/28/-
			course		seminar/laboratory/project	
Distribution of time						44hours
Study using the manual, course sup	port, b	oiblio	graphy and handy	vritten	notes	15
Supplementary documentation usin	g the l	librar	y, on field-related	l electi	onic platforms and in field-	15
related places					_	
Preparing academic seminaries/laboration	oratori	es/th	nemes/ reports/ po	rtfolio	s and essays	10
Tutorials						2
Examinations						2
Other activities.						-
3.7 Total of hours for	44					
individual study						
3.9 Total of hours per	100					
semester						
3.10 Number of credits	4					

4. Pre-requisites (where applicable)

1 \	
4.1 related to the	(Conditions) - Electromagnetic field theory, Physics, Mathematics
curriculum	
4.2 related to skills	-Knowledge of electrical symbols, electrical diagrams, use of measuring devices, properties
	of materials.

5. Conditions (where applicable)

5.1. for the development of	The course can be conducted face-to-face or online
the course	-Videoprojector, Online Teaching Equipment
5.2.for the development of	Seminar/laboratory/project can be conducted face-to-face or online
the academic	- Equipment related to the conduct of laboratory hours
seminary/laboratory/project	- Preparation of the report, knowledge of the notions contained in the

	laboratory work to be carried out (synthesis material); - Performing all the laboratory work.								
6. Spec	6. Specific skills acquired								
Professional skills	 C1. Proper implementation of specific fundamental knowledge of mathematics, physics, chemistry, in the field of electrical engineering C3. Use of fundamental knowledge of electrotechnics C6. Diagnosis, troubleshooting and maintenance of electrical systems and components 								
Transversal skills									

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	of the discipline (resulting from the grid of the specific competences acquired)						
7.1 The	The Course of Electrotechnical Materials is designed for the purpose of presenting						
general	modern interdisciplinary problems regarding the study of electrical materials. Through						
objective of	the topic addressed, the course is meant to allow students to acquire basic knowledge,						
the subject	in the first stage, about the main phenomena that occur in the study of electrical						
	materials. The course is also intended to facilitate students the development of basic						
	theories and methods of physics, chemistry, suitable for the field of electrical						
	engineering. During the course, the aim is to attract students to discussions on the						
	issues presented so that they have an active participation						
7.2 Specific	• The laboratory work is designed to provide future engineers in the field of electrical						
objectives	systems. Description of basic concepts, theories and methods of physics, chemistry,						
	suitable for the field of electrical engineering. In the first part of the class time, students						
	are appropriated, by questions, discussions, or tests, of the theoretical notions						
	necessary for laboratory activity, after which, under the supervision of the teacher, the						
	experimental determinations are carried out. During the laboratory class time,						
	discussions are held with the students, who aim to establish the knowledge, and the						
	practical skills of carrying out the assembly schemes, the correct reading of the sizes						
	pursued, and the method of evaluating them.						

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
	Teaching is	
	done "online",	
	or "face-to-	
	face" according	
	to requirements	
1. Anorganic and organic chemistry. Chemical bonds	During	2
	teaching,	
	student	
	contributions	
	are requested	
	on course-	
	specific topics.	
	Some courses	
	are conducted	
	by teaching the	
	subjects and	
	debating them	
	by students.	
2. Crystalline corps. Defects of crystalline networks	Idem	2
3 Energy bands of the electron in crystal	Idem	2

4. Electrical conduction of metals	Idem	2
5. Electrical conduction of semiconductors	Idem	2
6. Electrical polarization	Idem	2
8. Technical and technological properties of electrotechnical	Idem	2
materials		
9. Conductive materials. Metals	Idem	2
10 Semiconductor materials	Idem	2
11. Gaseous and liquid electro-insulating materials	Idem	2
12. Solid electro-insulating materials	Idem	2
13 Magnetic materials	Idem	2
14. Magnetic liquids	Idem	2

- [1]. Claudia Olimpia Staşac, D.A. Hoble Materials for Electrotechnical and Electronics University of Oradea Publishing House 2020 ISBN 978-606-10-2092-8
- [2]. D.A. Hoble Materials for Electrical and Electronic Engineering University of Oradea Publishing House 2013 ISBN 978-606-10-1171-1
- [3]. D. Hoble Electrotechnical Materials University of Oradea Publishing House 2004 ISBN 973-613-579-9
- [4] D. Hoble Electrotechnical Materials -Laboratory Advisor- U.O.-1998
- [5] Rodica Helera Materiale pentru componente electronice- Ed. MatrixRom București 2003
- [6] A.Ifrim ş.a. Materiale electrotehnice E.D.P. 1982

8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Work protection rules specific to electrical equipment. Getting	During the first	2
the basics of the study of electrical materials.	hour of the	
·	laboratory will be	
	presented by the	
	teacher	
	coordinator of	
	the laboratory	
	work of the	
	notions related to	
	the protection of	
	work specific to	
	electrical	
	materials.	
2. The crystalline structure.	Presentation by	2
	students of the	
	report prepared	
	(synthesis	
	material). The	
	laboratory guide	
	is available in	
	printed format	
	within the	
	Laboratory and at	
	the University	
	Library, with	
	students having	
	constant access	
	to teaching materials.	
	- Test on	
	theoretical	
	knowledge	
	related to the	
	laboratory	
	- Performing	
	experimetal	
	САРСИПСКА	

	determinations - Interpretation of	
	the results	
	obtained.	
3. Study of volume resistivity.	idem	2
4. Study of surface resistivity	idem	2
5. Study of materials for contacts	idem	2
6. Dynamic study of brushes for electric machines	idem	2
7. Determination of dielectric rigidity in electro-insulating oils	idem	2
8. Determination of dielectric rigidity in solid dielectrics	idem	2
9. Determination of dielectric rigidity in gaseous dielectrics	idem	2
10. Study of viscosity of liquid dielectrics	idem	2
11. Study of Hygroscopicity.	idem	2
12. Determination of the characteristic of varistors.	idem	2
13. Study of the influence of temperature on photovoltaic cells.	idem	2
14 Evaluation of laboratory activity. End of the situation	14 Evaluation	2
	Teaching of	
	laboratories and	
	their support;	
	Remaining lab	
	recovery.	

- [1] D.A. Hoble Applications in the study of electrical materials University of Oradea Publishing House 2017 ISBN 978-606-10-1879-6
- [2]. D. Hoble Electrotechnical Materials University of Oradea Publishing House 2004 ISBN 973-613-579-9
- [3] D. Hoble Electrotechnical Materials -Laboratory Advisor- U.O.-1998
- [4] Rodica Hella Electronic Component Materials- Ed. MatrixRom Bucharest 2003
- [5] Petre Notingher Electrotechnical Materials. Uses. Ed. Politahnica Press 2005

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	For note 5: all subjects must be treated to minimum standards; -For grades >5 all subjects must be treated proportionally according to the scoring scale.	Written, oral or on-line examination	75 %
10.6 Laboratory	All laboratory work must be carried out, which is a condition to enter the exam.	Knowledge assessment test	25 %

10.8 Minimum performance standard:

Performing work under the coordination of a teacher, to solve problems specific to the study of electrical equipment and maintenance, maintenance and diagnosis of electrical equipment with the correct evaluation of workload, available resources, time of completion and risks, under conditions of application

of occupational safety and health rules. After the promotion of the discipline, the student must have the ability to understand the mechanisms of the main phenomena that take place at the level of the structure of electrotechnical materials, their main properties, so that he can choose the right meter in the various practical engineering applications.

Completion date Course owner's signature 29.08.2022

Signature of the laboratory owner

Lecturer. dr. ing. STAŞAC CLAUDIA OLIMPIA

Lecturer dr. ing. STAŞAC CLAUDIA OLIMPIA

Date of endorsement in the Electrical Engineering department:

01.09.2022

Prof.univ. dr. ing.inf.habil. Hathazi Francisc Ioan

Date of endorsement in the Faculty Board: 23.09.2022

Prof.univ.dr.ing.habil. Mircea Gordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			El	lecti	romagnetic comp	atibil	ity	
2.2 Holder of the subject			pro	prof.PhD.Hathazi Francisc – Ioan				
2.3 Holder of the a seminar / laborator				/	- / PhD. student Cov	aciu N	Mihaela	
2.4 Year of study	III	2.5 Semest	er	V	2.6 Type of the	Ex.	2.7 Subject	Domain Discipline
					evaluation		regime	(DD)

3. Total estimated time (hours of didactic activities per semester)

3. I otal estillated tille (nours of	arauc	tie detrities per semeste	1)		
3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic	-/-/2
				seminar/laboratory/project	
3.4 Total of hours from the	56	of which: 3.5 course	28	3.6 academic	-/-/28
curriculum				seminar/laboratory/project	
Distribution of time					44 hours
Study using the manual, course support, bibliography and handwritten notes				10	
Supplementary documentation using the library, on field-related electronic platforms and in field-			10		
related places		•		_	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			10		
Tutorials				4	
Examinations					10
Other activities.					

3.7 Total of hours for individual study	44
3.9 Total of hours per semester	100
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the curriculum	
4.2 related to skills	Competences corresponding to the first 3 years of preparation for the
	degree in Electrical Engineering

5. Conditions (where applicable)

5.1. for the development of	The course can be taken face-to-face or online. Laptop, video projector,
the course	magnetic board, free speech.
5.2.for the development of	- / - / The project can be held face-to-face or online. Computer network
the academic	with workstation for each student, access to software that is studied in the
seminary/laboratory/project	course, network access to the Internet
C C 101 1 111 1 1	

6. Specific skills acquired

Professional skills

- C.1. Adequate application of basic knowledge of mathematics, physics, specific chemistry, in the field of electrical engineering;
- C.3. Operation with fundamental concepts in electrical engineering.

Transversal skills

- CT.1. Identifying the objectives to be achieved, the available resources, the conditions for their completion, the work stages, working hours, deadlines and related risks;
- CT.2. Identify roles and responsibilities in a multidisciplinary team and apply effective relationship and work techniques within the team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

<u> </u>	
7.1 The general objective of	• It addresses the notions regarding electromagnetic compatibility,
the subject	sources of disturbances, coupling mechanisms and anti-disturbance
	measures, passive elements for antiparasitic, norms and standards of
	electromagnetic compatibility, as well as elements related to
	concrete industrial applications.
7.2 Specific objectives	anti-disturbance design of a circuit;
	• recognition of electromagnetic interference problems and diagnosis
	of the cause

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
Course 1. Electromagnetic compatibility field. Disturbing signals. Levels of disturbance.	Laptop, video projector, IQ Board, free speech	2
Course 2 Sources of natural disturbances. Solar radiation. Nuclear electromagnetic pulse.	Laptop, video projector, IQ Board, free speech	2
Course 3 Sources of disturbances caused by human activities. Reverse band disturbances. Radio transmitters. Industrial and medical frequency generators.	Laptop, video projector, IQ Board, free speech	2
Course 4 Sources of broadband interference. Manifold engines. Electronic power converters. Gas discharge lamps. Car ignition systems.	Laptop, video projector, IQ Board, free speech	2
Course 5 Transient phenomena. Electrostatic discharges. Inductance switching. Transient phenomena in electrical networks. High voltage tests.	Laptop, video projector, IQ Board, free speech	2
Course 6 Types of couplings in circuits with concentrated constants. Galvanic couplings, inductive couplings, capacitive couplings.	Laptop, video projector, IQ Board, free speech	2
Course 7 Types of couplings in circuits with distributed constants. Common impedance couplings, magnetic field couplings, electric field couplings.	Laptop, video projector, IQ Board, free speech	2
Course 8 Flat electromagnetic wave coupled with transmission lines. Multi-line lines	Laptop, video projector, IQ Board, free speech	2
Course 9 Plane wave programming in environments with different properties. Plane wave reflection and refraction.	Laptop, video projector, IQ Board, free speech	2
Course 10 The penetration of the plane wave into conductive environments. Screen effect.	Laptop, video projector, IQ Board, free speech	2
Course 11	Laptop, video projector, IQ	2

Electromagnetic screen theory. Screen enclosure materials	Board, free speech	
and accessories.		
Course 12	Laptop, video projector, IQ	2
Procedures used in electromagnetic compatibility.	Board, free speech	
Earthing and grounding. Filters. Ferrite rings.		
Course 13	Laptop, video projector, IQ	2
Surge arresters. Differential transmissions and twisted pair	Board, free speech	
cables. Shielding. Optocouplers and optical filters.	_	
Course 14	Laptop, video projector, IQ	2
Circuit design from the EMC point of view	Board, free speech	

- 1. Hathazi Francisc Ioan Compatibilitate electromagnetică Note de curs, în curs de editare;
- 2. Schwab, A. Compatibilitate Electromagnetica. Bucuresti, 1996.
- 3. Hortopan, Gh., Principii si tehnici de compatibilitate electromagnetica, Bucuresti, 2005.
- 4. Ignea, A., Introducere in compatibilitatea electromagnetica, Timiosara, 1998.
- 5. Radu, S., Compatibilitate Electromagnetica. Vol. 1-2-3. Iasi, 1995.
- 6. Simion, E. Interferenta Electromagnetica. Ed. Casa Cartii de Stiinta, Cluj-Napoca, 1999.
- 7. Munteanu, C., Topa, V., Grindei, L., Advanced Numerical Computation Methods in EMC, Ed. Casa Cărții de Știință, Icluj-Napoca, 2001.
- 8. Perez, M. Handbook of Electromagnetic Comatibility, Academic Press, 1995, ISBN 0-12-550710-0
- 9. Williams, T. EMC for Product Designers, Newness, Oxford, 1999, ISBN 0-7506-2466-3.
- 10. Tsaliovich, A., Electromagnetic Shielding Handbook for Wired and Wireless EMC Applications , Kluwer Academic Publishers, 1999.

8.2 Seminar	Teaching methods	No. of hours/
		Observations
8.3 Laboratory	Teaching methods	No. of hours/
		Observations

Bibliography

- 1. Răduleț, R. Bazele electrotehnicii, Probleme, vol. I,II,III, Ed. Did. și Ped., București, 1981.
- 2. Leuca, T., Maghiar, T. Electrotehnică, Probleme, vol.IV, Litografia Univ. din Oradea, 1994.
- 3. Arion Mircea Note de seminar În curs de apariție
- 4. Leuca, T. Bazele electrotehnicii îndrumător de laborator, litografiat Univ. din Oradea, 1991
- 5. Molnar Carmen, Arion M. Electrotehnică. Aplicații practice Editura Universității din Oradea, 2003.
- 6. Arion Mircea Teoria circuitelor electrice II Notițe de Laborator în curs de apariție;

8.4 Project	Teaching methods	No. of hours/
		Observations
Topic 1 – Analysis of electromagnetic pollution generated	Laptop, video projector, free	
by induction furnaces.	speech, internet connection	
Topic 2 – Analysis of electromagnetic pollution generated	Laptop, video projector, free	
by microwave ovens. Industrial ovens / domestic ovens.	speech, internet connection	
Topic 3 – Harmonic pollution analysis generated by three-	Laptop, video projector, free	
phase microwave ovens.	speech, internet connection	
Topic 4 – Analysis of electromagnetic pollution in Oradea	Laptop, video projector, free	
due to trams.	speech, internet connection	
Topic 5 – Analysis of harmonic pollution generated by air	Laptop, video projector, free	
conditioners.	speech, internet connection	
Topic 6 – Harmonic pollution analysis generated by	Laptop, video projector, free	
induction hobs.	speech, internet connection	
Topic 7 – Harmonic pollution analysis generated by DIY	Laptop, video projector, free	
appliances.	speech, internet connection	
Topic 8 – Harmonic pollution analysis generated by	Laptop, video projector, free	
different lighting fixtures.	speech, internet connection	
Topic 9 – Analysis of techniques and methods for	Laptop, video projector, free	
reducing electromagnetic interference.	speech, internet connection	
Topic 10 – Analysis of electricity quality indicators.	Laptop, video projector, free	

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is in accordance with what is taught in other profile faculties both from the University of Oradea and from other university centers in the country and abroad. For a better adaptation to the requirements of the labor market of the content of the discipline, meetings were held both with representatives of the business environment and with teachers from pre-university education.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Oral examination	The evaluation can be	70 %
		done face-to-face or	
		online. Oral examination	
		of students	
10.5 Seminar			
10.6 Laboratory			
10.7 Project	Final evaluation test	The evaluation can be	30%
		done face-to-face or	
		online. Oral assessment -	
		test, report.	

10.8 Minimum performance standard:

• Carrying out the works under the coordination of a teacher, in order to solve specific problems in the electrical field with the correct evaluation of the workload, resources available for the necessary time to complete the risks, under the conditions of application of occupational safety and health norms.

Completion date:

29.08.2022

Date of endorsement in the department:

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the sul	2.1 Name of the subject Electrical equipments						
2.2 Holder of the subject			Lectu	rer dr.ing. Stașac	Claudia Olimpi	a	
2.3 Holder of the academic seminar/laboratory/project			Lectu	rer dr.ing. Stașac	Claudia Olimpi	a	
2.4 Year of study	3	2.5	5	2.6 Type of the	Ex -	2.7 Subject	Domain
		Semester		evaluation	Examination	regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

er rotar estimated time (noting of d				<u> </u>		
3.1 Number of hours per week		4	of which: 3.2	2	3.3 academic	-/2/-
			course		seminar/laboratory/project	
3.4 Total of hours from the curricu	lum	56	Of which: 3.5	28	3.6 academic	-/28/-
			course		seminar/laboratory/project	
Distribution of time						48
						hours
Study using the manual, course sup	port,	biblio	graphy and handw	ritten	notes	20
Supplementary documentation using	ng the	librar	y, on field-related	electro	onic platforms and in field-	10
related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					10	
Tutorials					-	
Examinations						4
Other activities.						
3.7 Total of hours for	44					
individual study						
3.9 Total of hours per	100					
semester						
3.10 Number of credits	4					

4. Pre-requisites (where applicable)

4.1 related to the	Electrotechnics, Electrical Technology
curriculum	
4.2 related to skills	Knowledge of electrical diagram symbols.

5. Conditions (where applicable)

5.1. for the development of the course	The course can be held face-to-face or online
5.2.for the development of	the laboratory can be carried out face to face or online - Equipment related
the academic	to laboratory hours - Preparation of the report, knowledge of the notions
seminary/laboratory/project	contained in the laboratory work to be performed (synthesis material); -

		Carrying out all laboratory work.						
6. Spec	5. Specific skills acquired							
Professional skills	- C5. Design and coordina	knowledge of electrotechnics ation of experiments and tests nooting and maintenance of electrical systems and components						
Transversal skills								

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

· · · · · · · · · · · · · · · · · · ·	s of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	• The Electrical Equipment course is designed to present modern interdisciplinary issues
general	regarding the study of electrical equipment. Through the approached topic, the course
objective of	is meant to allow students to acquire basic knowledge, in the first stage, on the main
the subject	phenomena that occur in the operation of electrical appliances, and in the second stage
	of knowledge on the maintenance of electrical equipment . The course is also meant to
	facilitate students to develop skills and competencies in the issue of correct choice of
	equipment that is part of electrical installations.
7.2 Specific	• The laboratory works are designed to provide future electromechanical engineers with
objectives	practical skills in the study, maintenance of electrical appliances, construction,
	research, operation, repair and maintenance of electrothermal installations. The content
	of the seminar presented is based on the need to deepen the problems presented in the
	course. Students have the opportunity to identify electrical supply diagrams of
	electrical equipment, familiarity with modern means of measuring temperature,
	electrical parameters during the operation of electrical equipment. They will
	understand the complexity and usefulness and maintenance of these facilities and will
	treat them as such. Knowledge is useful in developing skills in addressing the specific
	problems faced by a specialist in electromechanics.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
	Teaching is	
	done "online",	
	or "face-to-	
	face"	
	depending on	
	requirements	
1. The place and importance of electrical equipment in industrial	During the	2
installations	teaching,	
	students'	
	contributions	
	on the specific	
	topics of the	
	course are	
	requested.	
	Some courses	
	are conducted	
	by teaching	
	topics and	
	debating them	
	by students.	
2. Clasification of the electrical devices	idem	2

3. Electrical contact	idem	2
4. Calculation of resistance and heating of contacts	idem	2
5. Thermal effects in electrical equipments	idem	2
6. Electromagnet as a component of electrical apparatus	idem	2
9. Relays and triggers. Operating characteristics. Constructive	idem	2
types.		
10 Intermediate, current and time relays. Their role, construction	idem	2
and typical patterns of use		
11. Contactors. Their role, construction and typical patterns of use	idem	2
12. Low voltage circuit breakers. Principles of electric arc	idem	2
extinguishing		
13. Medium and high voltage circuit breakers. Separators.	idem	2
Role, constructive types		
14. Modern trends in the construction of electrical equipment	idem	2

- [1]. C. Stasac, D. Hoble Electric devices. Fundamentals and applications University of Oradea Publishing House 2022
- [2]. D. Hoble, C. Staşac Electrical Apparatus and Equipment University of Oradea Publishing House 2004
- [3] D. Hoble, C. Cheregi Electrical Installations University of Oradea Publishing House 2004
- [4] I. Hortopan Electrical appliances EDP 1996
- [5] T.Maghiar, D.Hoble, L.Bandici Installations and use of electricity University of Oradea Publishing House 2000
- [6] D.Hoble Electrical appliances: Practical applications Oradea University Publishing House 2002
- [7] T. Maghiar D. Hoble .S. Paşca, M.Popa - Installations and use of electricity Laboratory guide University of Oradea 1998

- Offiversity of Oracea - 1998	l m 1.	
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Labor protection standards specific to electrical equipment.	In the first	2
Basic notions and concerns study of electrical equipment.	laboratory hour	
	will be	
	presented by	
	the teacher	
	coordinating	
	the laboratory	
	works of the	
	notions related	
	to labor	
	protection	
	specific to	
	electrical	
	equipment.	
2. Electrical conductors. Constructive types. Calculation of	Presentation to	2
conductors.	the students of	
	the prepared	
	report	
	(synthesis	
	material). The	
	laboratory	
	guide can be	
	found in printed	
	format in the	
	Laboratory, and	

	in the	
	University	
	Library, the	
	students having	
	permanent	
	access to the	
	didactic	
	materials Test	
	regarding the	
	theoretical	
	knowledge	
	related to the	
	seminar -	
	Carrying out	
	experimental	
	determinations	
	- Interpretation	
	of the obtained	
	results.	
3. Electrical contacts. The influence of the pressing force.	idem	2
4. The electromagnet. Construction. Operation.	idem	2
5. The electromagnet. The influence of the air gap. Coil cage.	idem	2
6. Fuses.	idem	2
7. Automatic fuses.	idem	2
8. Relays and triggers. Constructive types.	idem	2
9. Intermediate relays.	idem	2
10. Time relays	idem	2
11. Electrical contactors.	idem	2
12. Surveillance relays	idem	2
13. Realization of a complex scheme on the existing modules in the	idem	2
laboratory. Choice of equipment.		
14. Realization of a complex scheme on the existing modules in the	idem	2
laboratory. Practical realization.		
D'11' 1		

- [1]. D. Hoble, C. Staşac Electrical Apparatus and Equipment University of Oradea Publishing House –
- [2] D. Hoble, C. Cheregi Electrical Installations University of Oradea Publishing House 2004
- [3] I. Hortopan Electrical appliances EDP 1996
- [4] T.Maghiar, D.Hoble, L.Bandici Installations and use of electricity University of Oradea Publishing House 2000
- [5] D.Hoble Electrical appliances: Practical applications Oradea University Publishing House 2002
- [6] T. Maghiar D. Hoble .S. Paşca, M.Popa - Installations and use of electricity Laboratory guide University of Oradea 1998
- [7] *** Catalogs of existing laboratory equipment.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	For grade 5: all	Written examination	75 %

	subjects must be treated		
	to minimum standards;		
	For grades> 5 all		
	subjects must be treated		
	to standards imposed by		
	the grading scale;		
10.6 Laboratory	In the last laboratory	Knowledge assessment	25 %
	session the students will	test	
	present the works		
	performed, respectively		
	the results obtained.		

10.8 Minimum performance standard:

- Carrying out works under the coordination of a teacher, to solve specific problems of the study of electrical equipment and maintenance, maintenance and diagnosis of electrical equipment with the correct assessment of workload, available resources, time required and risks, in conditions of application of occupational safety and health regulations. Principle of operation and maintenance diagnosis, composition of electrical equipment.

Completion date Course owner's signature 29.08.2022

Signature of the laboratory owner

Lecturer. dr. ing. STAŞAC CLAUDIA OLIMPIA

Lecturer dr. ing. STAŞAC CLAUDIA OLIMPIA

Date of endorsement in the Electrical Engineering department:

01.09.2022

Prof.univ. dr. ing.inf.habil. Hathazi Francisc Ioan

Date of endorsement in the Faculty Board: 23.09.2022

Prof.univ.dr.ing.habil. Mircea Gordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			COMPUTER AIDED DESIGN					
2.2 Holder of the su	ıbjec	t	Popa Monica					
2.3 Holder of the academic seminar/laboratory/project		Pop	a Mo	onica				
2.4 Year of study		2.5 Semeste	er	V	2.6 Type of the evaluation	Ex	2.7 Subject regime	I

⁽I) Imposed; (O) Optional;

3. Total estimated time (hours of didactic activities per semester)

5. Total estimated time (nours of didacti	e activiti	es per semester)			
3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 academic	1
				laboratory	
3.4 Total of hours from the curriculum	42	of which: 3.5 course	28	3.6 academic	14
				laboratory	
Distribution of time					hours
Study using the manual, course support,	bibliogra	aphy and handwritten not	es		34
Supplementary documentation using the library, on field-related electronic platforms and in field-				6	
related places					
Preparing academic seminaries/laborato	ries/ then	nes/ reports/ portfolios ar	nd essa	ys	16
Tutorials				3	
Examinations					3
Other activities.					

3.7 Total of hours for	62
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	Fundamentals of electrotechnics, Numerical methods
curriculum	
4.2 related to skills	Computer operation

5. Conditions (where applicable)

et conditions (where apprecia	·,
5.1. for the development of	on-site
the course	
5.2. for the development of	on-site
the academic laboratory	Computers and software packages Matlab, Flux

6. Spe	6. Specific skills acquired					
	C2. Use of fundamental concepts of computer science and information technology					
Professional skills	C5. Automation of electromechanical processes					

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	 Explanation and interpretation of software packages for design and optimization of representatives electrical sysstems
7.2 Specific objectives	 Computer aided design of basic electrical engineering subjects Interpretation of results obtained with CAD software packages

8. Contents *

8.1 Course	Teaching methods	No. of hours/
		Observations
Basics of Matlab. Applications – Point by point method.	notes on blackboard,	2
Solving differential equation in Matlab.	Power Point	
	presentation	
Computer aided design examples: Circuits in transient	notes on blackboard,	2
regime.	Power Point	
	presentation	
Application – Defining the melting time of a fuse – Method	notes on blackboard,	2
of finite differences.	Power Point	
	presentation	
GUI - Graphical User Interfaces	notes on blackboard,	2
_	Power Point	
	presentation	
Equations, differential equations of electromagnetic and	notes on blackboard,	2
thermal field. Electrostatic field model.	Power Point	
	presentation	
Steady-state electrical field model. Magnetostatic field	notes on blackboard,	2
model. Magnetodynamic field model. Differential model of	Power Point	
thermal conduction.	presentation	
Finite element method. Variational formulation. Finite	notes on blackboard,	2
element numerical solution. 1D problem.	Power Point	
	presentation	
FEM in thermal field analysis. Example: Heating evaluation	notes on blackboard,	2
of a liniar conductor in electrocynetic regime. 2D numerical	Power Point	
model in finite element for evaluation of AC resistance of a	presentation	
solid conductor.		
Partial differential equation toolbox. Electrostatic field	notes on blackboard,	2
model. Modeling of an electromagnet	Power Point	
	presentation	
Applications in PDE toolbox: Numerical model of a	notes on blackboard,	2
capacitive transducer. Numerical model of an inductive	Power Point	

proximity transducer.	presentation	
Software package FLUX. Computer aided design of a DC	notes on blackboard,	2
electromagnet.	Power Point	
	presentation	
Coupling the electromagnetic field regime with transient	notes on blackboard,	2
thermal. Application in FLUX.	Power Point	
	presentation	
Optimization problems solved in Optimization Matlab	notes on blackboard,	2
Toolbox. Examples.	Power Point	
	presentation	
Optimization problems in electrical engineering. Inverse	notes on blackboard,	2
problems. Aplications: coil optimization, transversal flux	Power Point	
inductor	presentation	

- 1. Monica Popa Course notes http://webhost.uoradea.ro/mpopa/
- 2. V. Fireteanu, Monica Popa, T. Tudorache Modele numerice in studiul si conceptia dispozitivelor electrotehnice, Ed. Matrix Rom Bucuresti 2004
- 3. S.R. Hoole Computer aided analysis and design of electromagnetic devices Elesevier, New York, 1989
- 4. P. Neitaanmaki Inverse problems and optimal design in electricity and magnetism, Clarendon Press, Oxford 1996
- 5. P.P/ Silvester, R.L. Ferrari Finite elements for electrical engineers, Cambridge University Press 1994
- 6. MATLAB User's Manual
- 7. Flux User's Manual

8.3 Laboratory	Teaching methods	No. of hours/
		Observations
Matlab functions	assisting the students in	2
	solving pplications on	
	computer	
Solving the differential equations	assisting the students in	2
•	solving pplications on	
	computer	
Solving the transient regime at a DC motor startup	assisting the students in	2
	solving pplications on	
	computer	
Creating graphical user interfaces	assisting the students in	2
	solving pplications on	
	computer	
Applications in PDE Toolbox	assisting the students in	2
••	solving pplications on	
	computer	
Applications in Flux2D	assisting the students in	2
11	solving pplications on	
	computer	
Application in Optimization Toolbox	assisting the students in	2
•	solving pplications on	
	computer	

Bibliography

- 1. Monica Popa Laboratory applications http://webhost.uoradea.ro/mpopa/
- 2. V. Fireteanu, Monica Popa, T. Tudorache Modele numerice in studiul si conceptia dispozitivelor electrotehnice, Ed. Matrix Rom Bucuresti 2004
- 3. MATLAB User's Manual
- 4. Flux Tutorials, Cedrat

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In
order to provide a better accommodation to the labour market requirements, there have been organized
meetings both with representatives of the socio-economic environment and with academic staff with similar
professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the			
			final mark			
10.4 Course	Ability to solve a CAD	Oral examination,	80%			
	application	Application on computer				
10.5 Laboratory	Solving the tasks	Activity at laboratory	20%			
		classes				
10.6 Minimum performance standard:						
Passing the subject - grade ≥ 5 .						

Completion date: Signature of subject holder Signature of academic laboratory holder

29.08.2022 Assoc. Prof. Monica Popa Assoc. Prof. Monica Popa

E-mail: mpopa@uoradea.ro

Date of endorsement in the department: Signature of Department Head

01.09.2022 Prof. Francisc – Ioan Hathazi

E-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board: Signature of Dean

23.09.2022 Prof. Mircea Gordan

E-mail: mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Electrical installations				
2.2 Holder of the subject			Assoc. prof. Pasca Sorin				
2.3 Holder of the academic seminar/laboratory/project			As	soc. prof. Pasca S	Sorin		
2.4 Year of study	3	2.5 Semester	6	2.6 Type of the evaluation	Ex - Exam	2.7 Subject regime	Specialized Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per	3	of which: 3.2 course	2	3.3 academic	-/1/-	
week				seminar/laboratory/project		
3.4 Total of hours from the	42	of which: 3.5 course	28	3.6 academic	-/14/-	
curriculum				seminar/laboratory/project		
Distribution of time					hours	
Study using the manual, course support, bibliography and handwritten notes						
Supplementary documentation using the library, on field-related electronic platforms and in field-						
related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14	
Tutorials					-	
Examinations						
Other activities.						

3.7 Total of hours for individual study	33
3.9 Total of hours per semester	75
3.10 Number of credits	3

4. Pre-requisites (where applicable)

	4.1 related to the
nents	curriculum
Henris	
1.	4.2 related to skills

5. Conditions (where applicable)

e conditions (where approximate)	
5.1. for the development of the course	Teaching activities will normally take place face to face. If special measures will be imposed in the epidemiological context generated by the COVID-19 pandemic, the courses can be held online.
5.2.for the development of the academic seminary/laboratory/project	

6. Specific skills acquired

Professional skills	 C3.2. Explanation and interpretation of the operating modes of static, electromechanical converters, electrical and electromechanical equipments C3.5. Design of electromechanical or electrical installations C6.2. Identification and selection of components for operation, maintenance and integration in electromechanical systems
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general	 acquiring basic knowledge of electrical installations, especially low voltage 			
objective of the subject	electrical installations			
7.2 Specific objectives	 skills regarding reading and understanding a technical documentation, with 			
	the knowledge of the representation of equipment and apparatus in the			
diagrams of electrical installations				
	 knowledge of energy characteristics of consumers 			
	knowledge of the characteristics and role of equipment and apparatus in the			
structure of electrical installations at consumers				
	 knowledge the structure of the different categories of electrical 			
	installations, of the variants of equipping the circuits, columns and supply			
	points			
	 knowledge the basics and measures taken to ensure the quality of 			
electricity to consumers, reliable operation of installations and red				
losses				
skills regarding the sizing, choice and adjustment of equipment a				
	apparatus in the structure of electrical installations			
 knowledge of protection measures against electric shocks, as a pro- 				
	and as a method of implementation in electrical installations			

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Installations for the production, transmission, distribution and use of	For on-site	2
electricity	activity:	
1.1 Basic processes related to the use of electricity	Presentation	
1.2 Electric power system	with video-	
1.3 Effects of electric current on the elements of the electrical	projector and	
installation	additional	
1.4 Accidental contact of the elements of the electrical installation	explanations on	
with the human body	the blackboard	
1.5 Contact of the elements of the electrical installation with the		
ground		
2. Electrical installations - basics	For the on-line	2
2.1. Categories of electrical installations	activity: The	
2.2. Elements of the installation - equipments and conductive paths	university's	
2.3. The structure of an installation. Electrical circuit - the basic unit	e-learning	
of the installation	platform	
2.4. Technical documentation for an electrical installation	and / or	
	Microsoft	
3. Quality conditions in the supply of electricity to consumers	Teams, in	2
3.1. Disturbances in the power supply network	video-audio	
3.2. Electricity quality indicators	conferencing	
3.3. Continuity in power supply	mode, are used	

4. Transformer stations and substations	For on-site	4
4.1. Transformer stations. Primary circuits, secondary circuits, own	activity:	
services and auxiliary installations	Presentation	
4.2. Determination of the number and power of transformers.	with video-	
Aspects of economic functioning	projector and	
4.3. Medium voltage distribution	additional	
4.4. Transformer substations	explanations on	
4.5. Basics of protection by relays	the blackboard	
5. Power supply of industrial equipment and receivers		2
5.1. Power system components		
5.2. Consumer electrical distribution networks		
5.3. Diagrams of low voltage electrical networks		
5.4. Impedance of the supply path in radial networks and impedance		
of passive receivers		
6. Electrical loads in networks	For the on-line	2
6.1. Power circulation in the alternating current network	activity: The	
6.2. Electrical calculation of loads. Principles for determining the	university's	
required power	e-learning	
6.3. Coefficient of demand method	platform	
6.4. Calculation currents for common receiver circuits and for	and / or	
columns	Microsoft	
7. Conductors used in electrical installations	Teams, in	2
7.1. Types of conductors in low voltage electrical installations	video-audio	2
7.1. Types of conductors in low voltage electrical installations 7.2. Symbolization of conductors and cables	conferencing	
·	•	
7.3. Maximum permissible stresses for different types of conductors 7.4. Choice of conductor section	mode, are used	
		4
8. Switching and protection apparatus in electrical installations		4
8.1. Types of apparatus and their functions		
8.2. Switching apparatus. Specific issues.		
8.3. Protection of receivers and circuits in low voltage electrical		
installations. Protection of electrical columns. Conditions of		
provision.		
8.4. Correlation of the characteristics of the devices in the low		
voltage network. Selectivity		
9. Power factor compensation in industrial electrical installations.		2
9.1. Reactive power circulation. Power factor		
9.2. Causes and effects of reactive power consumption		
9.3. Methods for reducing reactive power flow		
9.4. Sizing of capacitor banks and related equipment		
10. Electric shock protection installations		2
10.1. Direct touch, indirect touch, step voltage		
10.2. Protective measures against electric shock		
10.3. Grounding installations - construction, sizing		
11. Voltage loss in low voltage electrical networks		2
11.1. Low voltage power line - line impedance, equivalent wiring		
diagram and calculation diagram		
11.2. Voltage drop, voltage loss, voltage deviation - definitions		
11.3. Determination of voltage losses in lines with concentrated load,		
respectively with distributed load, without peak loads		
11.4. The influence of peak loads on the calculation of voltage losses		
11.5. Checking for voltage loss		
12. Electrical installations related to buildings		2
Bibliography (selection)		

Bibliography (selection)

- 1. D. Comșa, ș. a., *Design of industrial electrical installations* (in Romanian), Didactic and Pedagogical Publishing House, Bucharest, 1983
- 2. P. Dinculescu, F.Sisak, *Electrical Instalations and equipments* (in Romanian), Didactic and Pedagogical Publishing House, Bucharest, 1983

- 3. S. Darie, I. Vădan, *Production, transmission and distribution of electricity* (in Romanian), Technical University Press, Cluj-Napoca, 2000
- 4. P. Dinculescu, *Low voltage industrial electrical instalations* (in Romanian), Matrix Rom Press, Bucharest, 2003
- 5. P. Dinculescu, *Schematics of electrical installations: principles of drawing up and reading* (in Romanian), Matrix Rom Press, 2005
- 6. V. Maier ș.a., Electric Power Quality (in Romanian), Technical University Press, Cluj-Napoca, 2012
- 7. C. Bianchi ş.a., *Design of electric lighting installations* (in Romanian), Technical Publishing House, Bucharest, 1981
- 8. E. Pietrăreanu, The electrician's diary (in Romanian), Technical Publishing House, Bucharest, 1986
- 9. J. Ignat ş.a., Low voltage electrical installations and networks (in Romanian), Matrix Rom, Bucureşti, 2003
- * * * SCHNEIDER Electrical Installation Guide (in Romanian), Schneider Electric, Bucharest,
 2003
- 11. * * * Norm for the design, execution and operation of electrical installations related to buildings, I7 2011 (in Romanian), Official Gazette of Romania, part I, no. 802 bis, 14.11.2011
- 12. T. Maghiar, M. Popa, S. Paşca, *Electrical Installations and Electric Power Use. Electrical lighting installations, design guide*, University of Oradea Press, 1998
- 13. S. Paşca, *Electrical Installations lecture notes* (electronic)

13. S. I aşea, Electrical Installations lecture notes (electronic)		
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Protective measures against electric shock, Part I		2
2. Protective measures against electric shock, Part II		2
3. Experimental determination of grounding resistance		2
4. Ensuring the supplementary power supply to consumers		2
5. Power factor compensation in industrial electrical installations		2
6. Electrical installations for buildings		2
7. Verification of knowledge and evaluation of activity at laboratory		2
classes		

Bibliography (selection)

- 1. D. Comșa, et al, *Design of industrial electrical installations* (in Romanian), Didactic and Pedagogical Publishing House, Bucharest, 1983
- 2. P. Dinculescu, F.Sisak, *Electrical Instalations and equipments* (in Romanian), Didactic and Pedagogical Publishing House, Bucharest, 1983
- 3. P. Dinculescu, *Low voltage industrial electrical instalations* (in Romanian), Matrix Rom Press, Bucharest, 2003
- 4. P. Dinculescu, *Schematics of electrical installations: principles of drawing up and reading* (in Romanian), Matrix Rom Press, 2005
- 5. S. Pavel, et al, *Applications on Power Quality* (in Romanian), Technical University Press, Cluj-Napoca, 2012
- 6. *** SCHNEIDER Electrical Installation Guide (in Romanian), Schneider Electric, Bucharest, 2003
- 7. *** Norm for the design, execution and operation of electrical installations related to buildings, I7 2011 (in Romanian), Official Gazette of Romania, part I, no. 802 bis, 14.11.2011
- 8. T. Maghiar, M. Popa, S. Paşca, *Electrical Installations and Electric Power Use. Electrical lighting installations, design guide*, University of Oradea Press, 1998
- 9. S. Paşca, Electrical Installations laboratory works (electronic)

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of	10.1 Evaluation	10.2 Evaluation methods	10.3 Percent from
activity	criteria		the final mark
10.4	- exam grade,	- Students will take a written exam, after which they	75 %
Course	Ex	will get the grade Ex;	
		- If special measures will be imposed in the	
		epidemiological context generated by the COVID-19	
		pandemic, the exam can beheld online, using the e-	
		learning platform of the University of Oradea or the	
		Microsoft Teams platform, in compliance with the	
		requirements imposed by the <i>Methodology for</i>	
		conducting didactic activities during the academic	
		year.	
10.5	- the final	- the students will take a test (set of questions) on the	25 %
Laboratory	grade for	laboratory works, after which they will obtain the	
	laboratory	grade TL	
	activity, L	- another DL grade will be given on the personal	
	•	laboratory file (complete file, experimental data	
		processing, themes and applications solved correctly)	
		- final grade for the laboratory activity results:	
		L = (TL + DL) / 2	
100000		- requirements: $TL \ge 5$, $DL \ge 5$	

10.8 Minimum performance standard:

- Passing the exam (obtaining the credits) involves: Ex ≥ 5 and L ≥ 5

- The final grade is calculated as follows: $N = 0.75 \cdot Ex + 0.25 \cdot L$

Completion date: Signature of the course holder Signature of the laboratory holder

29.08.2022 Assoc. prof. Sorin Paşca Assoc. prof. Sorin Paşca

E-mail: spasca@uoradea.ro

Date of endorsement in the department:

Ol.09.2022

Signature of the head of department

Prof. habil. Francisc-Ioan Hathazi

E-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board: Signature of the dean

23.09.2022 Prof. habil. Ioan-Mircea Gordan

E-mail: mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Numerical Systems Design				
2.2 Holder of the subject		Lecturer PhD eng. Novac Cornelia Mihaela					
2.3 Holder of the academic seminar/laboratory/project			Lecti	Lecturer PhD eng. Codrean Marius			
2.4 Year of study	3	2.5 Semester				Specialized Discipline	

3. Total estimated time (hours of didactic activities per semester)

2. Total estimated time (nours of didactic	ucti vit	les per semester)			
3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
		course		seminar/laboratory/project	
Distribution of time					33
Study using the manual, course support, bibliography and handwritten notes					10
Supplementary documentation using the library, on field-related electronic platforms and in field-				10	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				7	
Tutorials					
Examinations					6
Other activities.					

3.7 Total of hours for	33
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

I To Toquibites ("Incre	application)
4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- Equipment needed for laboratory hours.
the academic	- The laboratory hours can be carried out face to face or online
seminary/laboratory/project	
6. Specific skills acquired	

Professiona I skills	- C2. Use of fundamental concepts of computer science and information technology C5. Design and coordination of experiments and tests.
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	sine (resulting from the grid of the specific competences acquired)		
7.1 The general objective	The main objective of the discipline "Design of digital systems" aims to		
of the subject	deepen the design and implementation of digital systems to obtain high-		
	performance digital systems.		
7.2 Specific objectives	In order to achieve the main objective, the following specific objectives are		
	pursued:		
	• To use manual or automated tools, to analyze or predict the performance		
	of digital systems in different operating conditions;		
	• To implement, simulate and test in Xilinx certain numerical systems;		
	To identify, design and implement types of numerical systems.		

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Numerical systems	Interactive lecture +	2
Numerical systems or counting bases. Types of numerical	video projector /	
systems. The conversion of numbers from one counting base	Online	
to another. The binary numbering system. Codes.		
2. Numerical systems. Operating Principles	Interactive lecture +	2
Introduction. The digital world. Classification of numerical	video projector /	
systems. Logical levels, waveforms. Classification of digital	Online	
integrated circuits by complexity. General rules to represent		
the electrical scheme.		
3. Logical gates	Interactive lecture +	2
Introduction. Boolean constants and variables. The truth	video projector /	
table. Binary numbers. Postulates and theorems of Boolean	Online	
algebra. Elementary logical gates.		
4. Combinational logic circuits	Interactive lecture +	4
Decoder. Demultiplexer. Multiplexer. Encoder. Numeric	video projector /	
comparator. Parity detector. Parity generator. Adder.	Online	
5. Sequential logic circuits	Interactive lecture +	4
SR Flip Flop. JK Flip Flop. D Flip Flop. T Flip Flop.	video projector /	
Applications	Online	
6. Shift Registers	Interactive lecture +	2
Introduction. Serial-in to Serial-out (SISO) Shift Register.	video projector /	
Serial-in to Parallel-out (SIPO) Shift Register. Parallel-in to	Online	
Serial-out (PISO) Shift Register. Parallel-in to Parallel-out		
(PIPO) Shift Register. Universal shift registers. Applications		
of shift registers.		
7. Counters.	Interactive lecture +	4
Introduction. Classification of counters. Asynchronous	video projector /	
counters. Synchronous counters.	Online	
8. Semiconductors memories	Interactive lecture +	4

Introduction. Classification of memories. Information	video projector /	
measurement units. Memory parameters. Operating principle	Online	
of a memory. ROM memories. RAM memories. Storage		
capacity expansion. Special memories. Memory applications		

Bibliography

- 1. Proiectarea sistemelor numerice. Note de curs, M. Novac
- 2. Analiza și sinteza dispozitivelor numerice. Proiectare logică, note de curs, Patrascoiu, Nicolae
- 3. Digital Design Principles and Practices, John F. Wakerly, Prentice-Hall, 2000.
- 4. Sisteme de calcul reconfigurabile, O. Cret, Ed. U.T. Press, Cluj-Napoca, 2005.
- 5. https://e.uoradea.ro/course/view.php?id=1960 (materiale didactice)

8.2 Laboratory	Teaching methods	No. of hours/
		Observations
1. Gate implementation of logic functions.	Free presentation, with	2
	exemplification on the	
	board./Personal	
	Computers	
2. Determining the optimal path.	idem	2
3. Description of logical functions using Veich diagrams.	idem	2
4. The summation circuit.	idem	2
5. 7-segment BCD decoder.	idem	2
6. Multiplexer circuit and demultiplexer circuit.	idem	2
7. Code decoder circuit.	idem	2
WH 11 1		

Bibliography

- 1. Proiectarea logică a circuitelor combinaționale. Aplicații. E. Mang, I. Mang, C. Popescu
- 2. Analiza și sinteza sistemelor numerice. Aplicații. Mihai Timiș, 2003, Ed. Performantica, Iași
- 3. https://e.uoradea.ro/course/view.php?id=1960 (didactic materials)

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Exam	Oral examination practical computer applications / Online Assessment (Online questionnaire)	80 %
10.6 Laboratory	Laboratory activity + final test	Knowledge assessment test	20 %

10.8 Minimum performance standard:

For note 5: all subjects must be treated to minimum standards.

For note 10: all subjects must be treated to maximum standards.

Completion date:

28.08.2022

Date of endorsement in the

department:

1.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Electrical Engineering
1.4 Field of study	Electrical Engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject	t	Mic	row	ave technique			
2.2 Holder of the subject			Prof.DrIng.Ec. Silaghi Alexandru Marius				
2.3 Holder of the academic seminar/laboratory/project			f.Dr	:-Ing.Ec. Silaghi Alex	andrı	ı Marius	
2.4 Year of study III	2.5 Semest	er	5	2.6 Type of the evaluation	Ex	2.7 Subject regime	SD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 academic seminar/laboratory/project	1
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time					62h
Study using the manual, course support, bibliography and handwritten notes					20
Supplementary documentation using the library, on field-related electronic platforms and in field-				18	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays 8					8
Tutorials				4	
Examinations			12		
Other activities.					

3.7 Total of hours for	62
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the curriculum	Knowledge of mathematics and physics
4.2 related to skills	PC usage, Electrical engineering, Electrotechnical materials, Electrical measurements, Electronics

5.1. for the development of	- attending at least 50% of the course
the course	- the course can take place face to face or online.
5.2.for the development of	- mandatory presence at all seminar hours;
the academic	- the project can take place face to face or online.
seminary/laboratory/project	

6. Spec	ific skills acquired
	C4.2 Explain the specific techniques for the analysis, modeling and simulation of electrical systems
Professional skills	
sal	CT3. Efficient use of information sources and communication resources and assisted professional training (Internet portals, specialized software applications, databases, online courses, etc.) both in Romanian and in a language of international circulation.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	1 (6 6 1 1 1)
7.1 The	 The course "Microwave Technique" proposes a familiarization of students in the
general	field of Electrical Engineering, with knowledge in the field of theoretical
objective of	electrical engineering and to present electromagnetic phenomena in terms of
the subject	applications in high frequency technology.
7.2 Specific	 Being a specialized discipline in electrical engineering, its objective is to present
objectives	calculation methods, in a unitary framework, which are necessary to solve
	problems in classical or modern electrical engineering.
	 The design part familiarizes students with practical aspects regarding the
	operation of high frequency electrical systems.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Chapter 1. INTRODUCTORY CONSTITUENTS	Free exposure, with the presentation on-	2 h
Chapter 2. MICROWAVES	Free exposure, with the presentation on-	4 h
Chapter 3. WAVEGUIDES	Free exposure, with the presentation on-	8 h
Chapter 4. MICROWAVE GENERATING SOURCES	Free exposure, with the presentation on-	4 h
Chapter 5. MICROWAVE CIRCUITS	Free exposure, with the presentation on-	6 h
Chapter 6. APPLICATIONS	Free exposure, with the presentation on- line	4 h
Total		28 h
Bibliography		

- 1. Andrei, H.L., Popovici, D., Cepișcă, C.- Inginerie Electrică Modernă, vol. 1, Editura Electra București, 250 pp., 2003, ISBN 973-8067-87-1.
- 2. Hănțilă, I.F.,s.a., Silaghi, M., Leuca, T.-Elemente de circuit cu efect de câmp electromagnetic Editura ICPE, București, 1998.
- 3. William H.Hyat, John A. Buck, Engineering Electromagnetics, McGraw Hill, 2000
- 4. Kose, V., Sivert, J.- Non Linear Electromagnetic Systems. Advanced Techniques and Mathematical Methods, IOS Press, 1998
- 5. Maghiar, T., Leuca, T., Silaghi, M., s.a. Electrotehnică, curs, Editura Universitatii din Oradea, 1999
- 6. Rohde, L.U., Jain, G. C., Poddar, A.K., Ghosh, A. K.- Introduction to Integral Calculus: Systematic Studies with Engineering Applications for Beginners, Wiley, 2012
- 7. Sora, C.-Bazele electrotehnicii, Editura Didactică și Pedagogică, Bucuresti, 1982.
- 8. Silaghi , A.M., Pantea, M.D. Introducere in Electrotehnica, Editura Risoprint, Cluj-Napoca, 2010, ISBN 978-973-53-0258-0
- 9. Silaghi , A.M., Pantea, M.D., Silaghi, Helga Electrotehnica industriala, Editura Universității din Oradea, 2010, ISBN 978-606-10-0186-6
- 10. Süsse,R., Marx,B. Theoretische Elektrotechnik. Varationsrechnung und Maxwellsche gleichungen,Wissenschaftsverlag Mannhei, 1994, ISBN 3-411-1781-2 hhtp://prola.aps.org

8.2 Academic seminar/laboratory/project	Teaching	No. of hours/
	methods	Observations
General principles on microwave devices and equipment	The students	4 h
2. Behavior of dielectric materials in the microwave field and theoretical	receive the design	
considerations regarding the microwave heating mode	theme and the	4h
3. Presentation of the phenomenon corresponding to losses in dielectric	design	4h
materials	methodology and	4h
4. Drying and heating of dielectrics in the microwave field.	under the	4h
5. Microwave generators and their propagation mode	guidance of the	4h
6 Modeling of electromagnetic and thermal phenomena in the resonant	teacher they carry	2h
cavity and the sample body	out the project	2h
7. Design of microwave generators	stages, online.	211
8. Design of output circuits and protection and safety circuits. Magnetic		
circuit design	Ence annountation	
9. Realization of the assembly scheme for a microwave drying installation	Free presentation	
10. Teaching and supporting the project	and discussions	
	*. *	
10. Teaching and supporting the project	based on the topics that students have to prepare for that time, online.	

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

■ The content of the discipline is found in the curriculum of Electrical Engineering and Computers, Electrical or Electromechanical Systems and other university centers in Romania that have accredited these specializations, so knowledge of their basic notions in Electrical Engineering is a stringent requirement of employers in the field (Plexus, Faist Mekatronics, Celestica, Comau, GMAB etc) from the Oradea Industrial Park area.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percent from the
		methods	final mark
10.4 Course	Minimum required	Questioner on line with	80%
	conditions for passing the	9 subjects, online	
	exam (mark 5): it is		
	necessary to know the		
	fundamental notions required		
	in the subjects, without		
	presenting details on them		
	1pt ex officio - attendance		

	at the course 4PT 4 medium-level subjects - For 10:		
	1pt ex officio - attendance at the course 9PT 9 medium-level subjects		
10.5 Project	- for 6 the student has to go through the design stages - for 10 it is necessary to go through all the design stages, with the completion of calculations and wiring diagrams.	Free presentation with interactive discussion, on line. Finally, each student receives a grade, separate from the exam, which represents a share of 20% of the final grade, online.	20 %
10.6 Final exam note:	$Nfe=0.8Nse+0.2Np, Np\geq6$		

10.7 Minimum performance standard:

Course:- knowing the construction parts and the principle of operation of different electrical equipment.

- solving and explaining problems of medium complexity, associated with fundamental and engineering disciplines, specific to engineering sciences.
- participating in at least half of the courses.

Project: Carrying out a work / project, as a leader in a multidisciplinary team and responsibly distributing tasks specific to subordinates, adopting a positive attitude and respect for team members. The ability to make such an installation practically.

E110, tel.:+40 259 408 458, masilaghi@uoradea.ro, hhtp://masilaghi.webhost.uoradea.ro

Completion date: 29.09.2022

Date of endorsement in the department: 01.09.2022

Date of endorsement in the Faculty Board:23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject	ELECTRICAL MACHINES II				
2.2 Holder of the subject	Assoc. prof. PANTEA MIRCEA DĂNUŢ				
2.3 Holder of the academic Assoc. prof. PANTEA MIRCEA DĂNUŢ seminar/laboratory/project					
2.4 Year of study 3 2.5 Semester		2.6 Type of the	Exam	2.7 Subject	Specialized
	evaluation regime Discipline DD				

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2		3.3 academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
		course		seminar/laboratory/project	
Distribution of time					58 hours
Study using the manual, course support, bibliography and handwritten notes				28	
Supplementary documentation using the library, on field-related electronic platforms and in field-				14	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				14	
Tutorials					
Examinations				2	
Other activities.					

3.7 Total of hours for	58
individual study	
3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites(where applicable)

	(a the company of the
4.1 related to the	(Conditions) - ELECTRICAL MACHINES I
curriculum	
4.0 1 . 1 . 1 . 1 . 11	
4.2 related to skills	- Proper application of basic knowledge of electric machines

5.1. for the development of	
the course	video projector, laptop, blackboard.
5.2.for the development of	
the academic	Mandatory presence at all laboratories;
seminary/laboratory/project	•

nysics, chemistry,

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

7.1 The	The course "Electric Machines II" is a specialized discipline that presents theoretical
general	knowledge in the field of electric machines and their specific phenomena in terms of
objective of	applications in industry
the subject	
7.2 Specific	Acquisition of information and knowledge
objectives	The laboratory works familiarize the students with the practical aspects regarding the
	operation of electric machines
	The project allows the acquisition of principles and skills of design and implementation
	of systems containing three-phase electrical transformers

8. Contents*

8.1 Course	Teaching methods	No. of
		hours/
		Observations
Course I. Operating modes of electrical transformers		2
Course II - III. Special regimes of electrical transformers		4
Course IV. Switching		2
Course V. Speed adjustment and change of direction of the DC motor		2
Course VI. Classification of direct current generators	Video projector,	2
Course VII. Classification of DC motors and starting methods		2
Course VIII. The asynchronous machine. The constructive part and	slides Interactive	2
the operation.	blackboard teaching	
Course IX. Asynchronous motor and generator operation	8	2
Course X. Characteristics of asynchronous motors and generators		2
Course XI. Synchronous machine. The constructive part and the		2
operation.		
Course XII. Synchronous motor and generator operation		2
Course XIII. Characteristics of synchronous motors and generators.		2
Course XIV. Completion of the course		2

Bibliography

- 1. Pantea Mircea Electric cars Course notes
- 2. Constantin Bălă Electric cars Didactic and Pedagogical Publishing House, Bucharest 1982.
- 3. Biró Károly Electric machines and drives Lithograph IPC-N, Cluj 1987.
- 4. Ioan Boldea Transformers and electric machines Didactic and Pedagogical Publishing House, Bucharest 1994.
- 5. Aurel Câmpeanu, Vasile Iancu, M. Rădulescu Machines in electric drives Ed. Scrisul Rom, Craiova, 1996.
- 6. Aurel Câmpeanu Electric cars, Ed. Scrisul Românesc, 1977.
- 7. Al. Fransua, R. Măgureanu Electric machines and drives. Elements of execution, Technical Publishing House, Bucharest, 1986.
- 8. Ioan Felea Electric machines and drives, Litogr. Univ. from Oradea, 1994.

8.2 Laboratory	Teaching methods	No. of
		hours/
		Observations
1. DC motor speed measurement	Laboratory presentation	2
2. Reverse electromotive voltage of a DC motor	Based on the report prepared by the	2
3. The load of a DC motor	students, after a discussion with the	2
4. Adjusting speed, efficiency, torque and power	teacher on the paper, we proceed to	2
5. Speed control of a DC motor with a closed	identify the stand, the components	2
loop	necessary for the work, after which the	
6. Alternator current voltage control in a closed	students make the assembly of the	2
loop	practical part of the paper and only	
	together with the teacher make	
	inexhaustible determinations.	
	At the end, the results obtained face to	
	face are interpreted	
7. Variable cycle DC motor speed control	Students take tests from all laboratory	2
	work.	
D'' !!		

Bibliography

- 1. Pantea Mircea Electric cars Laboratory notes
- 2. Constantin Bălă Electric cars Didactic and Pedagogical Publishing House, Bucharest 1982.
- 3. Mircea Pantea, Marius Silaghi Electrotechnics Laboratory guide University of Oradea Publishing House, 2010, ISBN 978-606-10-0011-1

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	-	Written examination	66,66 %
10.6 Laboratory	-	Knowledge assessment	33,33 %
		test	

10.8 Minimum performance standard:

- Description of the operating principles of transformers and direct current, synchronous and asynchronous electric machines.
- Basic knowledge of the construction and operation of electric machines
- Explanation and interpretation of operating modes, phenomena that occur in the operation of electric machines, electrical and electromechanical equipment
- Proper use of electrical machines and monitoring of electromechanical systems
- Design of a three-phase electrical transformer of complexity
- Carrying out tests for a low complexity electrical system; data analysis, measurement and interpretation

Completion date:

29.08.2022

Signature of the course holder

Signature of the project holder

\$.1.dr.ing. Pantea Mircea

\$.1.dr.ing. Pantea Mircea

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building Corp V, floor 2, room V 213 Postal code 410087, Oradea, Bihor

county, Romania

E-mail: mirceadanutpantea@gmail.com

Discord MirceaPD # 1994

Date of endorsement in the department:

01.09.2022

Signature of the department director

Prof.univ.dr.ing.inf. Francisc - Ioan HATHAZI

Contacts:

University of Oradea, Faculty of I.E.T.I.

Str. University, no. 1, Building Corp A, floor 2, room A 206 Postal code 410087, Oradea, Bihor county, Romania Tel: 0259-408172, E-mail: francisc.hathazi@gmail.com

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel.: 0259-408204, E-mail: mgordan@uoradea.ro

<u>Date of endorsement in the Faculty</u> <u>Board:</u>

23.09.2022

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel :: 0259-408204, E-mail: mgordan@uoradea.ro

DISCIPLINE SHEET

1. Facts about the program

- Lucis as our the program	
1.1 Instituția de învățământ superior	UNIVERSITY OF ORADEA
1.2 Faculty	ELECTRICAL ENGINEERING AND INFORMATION
	TECHNOLOGY
1.3 Department	ELECTRICAL ENGINEERING
1.4 License Domain	ELECTRICAL ENGINEERING
1.5 Cycle of studies	LICENŢĂ
1.6 Study program/qualification	BEIUŞ ELECTROMECHANICS / ENGINEER

2. Discipline data

2.1 Name of the discipline			INDUSTRIAL ELECTROMECHANICAL MACHINERY						
	2.2 The holder of the course activities Chief of staff. Dr.Eng. Gal Teofil Ovidiu								
2.3 Holder of laboratory activities			Chi	ef of	staff. Dr.Eng. Gal	l Teof	il Ovidiu		
	2.4 Year of study III 2.5 Semester			6	2.6 Type of	Ex.	2.7 Discipline regimen	Ds	
						assessment			

3. Estimated total time (hours per semester of teaching activities)

3. Estimateu totai time (nours per semest	CI OI II	faciling activities)			
3.1 Number of hours per week	42	of which: 3.2	2	3.3 Laboratory	1
		course			
3.4 Total hours of the curriculum	42	of which: 3.5	28	3.6 laboratory	14
		course			
Distribution of the time fund					33
Study by textbook, course support, bibliography and notes					10
Additional documentation in the library, on specialized electronic platforms and in the field					7
Preparation of seminars/laboratories, themes, papers, portfolios and essays					13
Tutoriat					
Examination					3
Alte activități.					-

3.7 Total individual study	33
hours	
3.9 Total hours per semester	75
3.10 Number of credits	3

4. Preconditions (where applicable)

4.1 curriculum	Technical drawing, Electric machines;
4.2 of competitionte	Knowledge of symbols, graphs, specific to electrical schemes.

5. Conditions (where applicable)

5.1. course development	-"The course can be held face to face or online"		
	- Videoretroproiector, calculator;		
	- Attendance at least 50% of the courses.		
5.2. conduct of the laboratory	- "The seminar/laboratory/project can be held face-to-face or online"		
	- The equipment related to the laboratory class;		
	- Preparation of the report (synthesis material);		
	- Performing all the labor worksor;		
	- A maximum of four laboratory works can be recovered (30%);		
	- The frequency at laboratory hours below 70 % leads to the restoration of the		
	discipline.		

6. Specific competences acquired

Competențe Professional	 C.3.1. Description of the operating principles of machine tools, electrical and electromechanical equipment; C.3.2. Identification of component parts of machine tools, electrical and electromechanical equipment.
Competențe	• CT1. Identifying roles and responsibilities in a multidisciplinary team and applying effective networking
transverse	and work techniques within the team.

7. Objectives of the discipline (based on the grid of specific competences accumulated)

Objectives of the discipline (based on the grid of specific competences accumulated)					
7.1 The general objective of the discipline	 The course aims to familiarize students with the study and utility of electromechanical equipment specific to the industrial field, as well as with the adequate application of knowledge. Description of the operating principles of machine tools, electrical and electromechanical equipment. 				
7.2 Specific objectives	 Students will develop practical skills regarding the description, explanation, interpretation and identification of electromechanical equipment. They will interpret as correctly as possible the principle of operation, the block, electrical, hydraulic and pneumatic schemes for the actuation and operation of various machines. They will understand the complexity of these machines and treat them as such. 				

8. Conținuturi

8.1 Course	Teaching methods	No. Hours / Remarks
Lifting and transporting machines Generalities. Fields of use Lifting machines. Construction types and transmission of movement from the drive motor Continuous transport machines. Operation of the mechanical part. Choice and calculation of electric drive.	Videoretroproiector. The courses are conducted by teaching topics and engaging students in dialogues. Interspersed are requested contributions of students on topics specific to the course.	2
Lifting and transporting machines Electric lifts Handling equipment	Ditto	2
Electromechanical equipment for metalworking Introductory remarks Hydraulic devices used in the construction of electromechanical equipment	Ditto	2
Electromechanical equipment for metalworking Mechanical, hydraulic and electromagnetic couplings and brakes Electric drives of machine tools	Ditto	2
 5. Electromechanical equipment for metalworking Machine tools. - Drill; - Milling machine - Rabotat maşina 	Ditto	2
6. Electromechanical equipment for metalworking Machine tools Lathe; - Sheet metal bent press - Guillotine scissors;	Ditto	2
7. Electromechanical equipment for metalworking - Machine tools workpieces - prismatic	Ditto	2

8. Electromechanical equipment for metalworking	Ditto	2
- General notions regarding machine tools in the current		
context		
- Characteristics of "flexible" machine tools		
9. Pump	Ditto	2
- Fundamentals about pumps		
- Classification of pumps		
- Principles of operation of pumps		
10. Fans and ventilation installations	Ditto	2
-General. History of ventilation and air conditioning		
installations. Classification of ventilation and air		
conditioning installations;		
-Fans		
11. Fans and ventilation installations	Ditto	2
- Construction of fans		
- Ventilation installations		
12. Production and use of compressed air.	Ditto	2
-Introduction		
- Compressed air production		
13. Production and use of compressed air.	Ditto	2
- Production and distribution of compressed air		
- Preparation of compressed air		
14. Pneumoautomatica	Ditto	2

Bibliography:

- [1] Şt. Nagy "Industrial electromechanical equipment", University of Oradea Publishing House, 2013;
- [2] Şt. Nagy "Industrial electromechanical equipment", NEVALI Publishing House Cluj-Napoca, 2003;
- [3] Şt. Nagy "Industrial electromechanical equipment. Fundamental elements and applications", Editura NEVALI Cluj-Napoca, 2003;
- [4] E. Baptism. Masini-unelte, Editura Didactică și Pedagogică, București, 1970;
- [5] C-tin Bungău, M. Binșelan, C. Ganea *Machine tools. Fundamental Elements and Applications*, University of Oradea Publishing House, 2001;
- [6] W. Deppert, K. Stoll *Initiation into pneumoautomatics. Elemente și sisteme de comandă*, Editura Tehnică, 1975;
- [7] M. Galiş, et al. Proiectarea maşinilor-unelte, Editura Dacia, Cluj -Napoca, 1996;
- [8] E. Dodon Aggregated machine tools, vol. I and II, Lithographsof the University of Timisoara, 1988;
- [9] N. Ganea Choosing, operating, maintaining and repairing pumps, Editura Tehnică, Bucharest, 1975;
- [10] M. Ganea Machine tools and flexible systems, University of Oradea Publishing House, 2001;
- [11] V. Moraru, etc. Processing centers, TechnicalPublishing House, Bucharest, 1980;
- [12] V. Moraru, etc. Special machine tools, Didactic and Pedagogical Publishing House, Bucharest, 1982;
- [13] E. Seracin *The electromechanical equipment of industrial enterprises*, Didactic and Pedagogical Publishing House, Bucharest, 1980;
- [14] Al. Vaida, et al. Design of machine tools, Didactic and Pedagogical Publishing House, Bucharest, 1980;
- [15] D. Zetu, et al. Automatic machine tools with numerical command, Didactic and Pedagogical Publishing House, Bucharest, 1982.

8.2 Laboratory	Teaching methods	No.				
		Hours /				
		Remarks				
1. Presentation of the laboratory.	- Presentation of the laboratory;	2				
Training on the rules of work	- Presentation of the report (synthesis material);					
safety technique.	- Test regarding the theoretical knowledge related to the					
	laboratory;					
2. Handling equipment	- The components of a gantry crane (Gantry Crane from	2				
	Geothermal) are identified;					
	- The movements of displacement and lifting of a weight are					
	executed (Gantry Crane from Geothermal);					
	- The electrical components of the gantry crane are identified;					
	- Identify the electrical components in the gantry crane control					
	cabinet;					
	- The electrical diagram of the gantry crane is studied;					

3/6

	- A malfunction caused in the electrical control diagram is identified and remedied;	
3. General problems concerning machine tools	- The machine tools in the laboratory are identified; - Identification of machine tools based on symbols;	2
4. The main hydraulic devices used in the construction of machine tools for the	- The hydraulic apparatus in the laboratory is identified; - The component parts of the hydraulic devices used in the construction of machine tools are identified;	2
transformation and control of energy and power	- The principle of operation and electric actuation of hydraulic devices will be studied;	
5. Kinematic and technological analysis of drilling machines	- Identify the component parts of the drilling machine G 12; - It follows the kinematics of the main movements of advance and drilling, identifying the elements from the kinematic scheme asthe real ones of the drilling machine;	2
	 The controls of the drilling machine are handled in manual and semi-automatic mode; Identify the electrical components in the control cabinet of the car; The electrical diagram of the drilling machine is studied; 	
	- A malfunction caused in the electrical control diagram is	
6. Kinematic and technological	identified and remedied; - The components of the snb parallel universal lathe are	2
analysis of lathes	identified; - It follows the kinematics of the main movements of advance and threading, identifying the elements from the kinematic scheme with the real ones of the lathe; - The controls are handled (with the lathe disconnected from the network) for different revs and advances, manually rotating the input shaft in the gearbox; - The practical operation with different adjustments of the cutting	
	parameters is carried out; - Identify the electrical components in the lathe control cabinet; - The electrical diagram of the lathe is studied; - A malfunction caused in the electrical control diagram is identified and remedied;	
7. Kinematic and technological analysis of milling machines	 Identify the component parts of the FUS 22 milling machine; It follows the kinematics of the main movements of advance and milling, identifying the elements from the kinematic scheme with the real ones of the milling machine; The controls of the milling machine are handled in manual and semi-automatic mode; The electrical components in the control cabinet of the milling machine are identified; The electrical diagram of the milling machine is studied; A malfunction caused in the electrical control diagram is 	2
	identified and remedied;	
8. Kinematic and technological analysis of rabotat and mortezat machines	 Identify the components of the SH transverse rabotat machine; It follows the kinematics of the main movements to be rabotated, identifying the elements from the kinematic scheme with the real ones of the rabotat car; The controls of the rabotat machine are handled manually; Identify the electrical components in the control cabinet of the rabotat machine; The electrical diagram of the rabotat machine is studied; 	2
	- A malfunction caused in the electrical control diagram is identified and remedied;	
9. Kinematic and technological analysis of grinding machines	- Identify the component parts of the universal round grinding rails RU	2
	-	

	- It follows the kinematics of the main movements to be rabotated,	
	identifying the elements from the kinematic scheme with the real ones of the grinding machine;	
	- The controls of the grinding machine are handled manually;	
	- Identify the electrical components in the control cabinet of the	
	rectified machine;	
	· ·	
	- The electrical diagram of the grinding machine is studied;	
	- A malfunction caused in the electrical control diagram is	
	identified and remedied;	
10. Kinematic and technological	- The components of the universal production milling machine	2
analysis of numerically controlled	are identified with the console and CN type FEXAC;	
machine tools	- It follows the kinematics of the main movements of advance and	
	milling, identifying the elements from the kinematic scheme with	
	the real ones of the milling machine;	
	- The controls of the milling machine are handled manually	
	and in CN mode;	
	- Identify the electrical components in the control cabinet of the	
	milling machine using the wiring diagram;	
	- Identification and presentation of the principle of operation,	
	respectively of the electrical and hydraulic components of the	
	machining center by milling CP UO-32.	
11. Pumps, hydraulic installations	- Identify the components of the pumps provided;	2
	- The type of coupling elements between the pump and the drive	
	element is identified;	
	- The components of a hydraulic installation of a machine tool	
	(pump, engine, manifolds, pressure monitoring devices, flow,	
	etc.) are identified;	
	-Calculate the engine power according to hydraulic parameters	
	(flow, pressure, coupling, etc.).	
12. Fans and ventilation	- Identify the components of a fan;	2
installations	- The type of coupling elements between the pump and the drive	
	element is identified;	
	- Identify the components of a ventilation installation (fan, motor,	
	etc.);	
	- Calculate the engine power according to the parameters of the	
	ventilation installation (flow, pressure, coupling, etc.).	
13. Production and use of	- A mobile compressor is used;	2
compressed air	- Identify the component parts of the compressor;	
•	- Calculate the engine power according to the parameters of the	
	compressed air installation (flow, pressure, etc.).	
14. Final evaluation/Recovery of	- Handing over the laboratories, by supporting them;	2
laboratory works (max. four	- Recovery of remaining laboratory Works e.	
papers)		

Bibliography:

- [1] Şt. Nagy "Industrial electromechanical equipment", University of Oradea Publishing House, 2013;
- [2] St. Nagy "Industrial electromechanical equipment", Editura NEVALI Cluj-Napoca, 2003;
- [3] Şt. Nagy "Industrial electromechanical equipment. Fundamental elements and applications", Editura NEVALI Cluj-Napoca, 2003;
- [4] E. Baptism. Masini-unelte, Editura Didactică și Pedagogică, București, 1970;
- [5] C-tin Bungău, M. Binșelan, C. Ganea *Machine tools. Fundamental Elements and Applications*, University of Oradea Publishing House, 2001;
- [6] W. Deppert, K. Stoll *Initiation into pneumoautomatics. Elemente și sisteme de comandă*, Editura Tehnică, 1975;
- [7] M. Galiş, et al. Design of machine tools, Editura Dacia, Cluj Napoca, 1996;
- [8] E. Dodon Aggregated machine tools, vol. I and II, Lithographsof the University of Timisoara, 1988;
- [9] N. Ganea *Choosing, operating, maintaining and repairing pumps*, Technical Publishing House, Bucharest, 1975:
- [10] M. Ganea Machine tools and flexible systems, University of Oradea Publishing House, 2001;
- [11] C-tin Ispas, N. Predincea, C. Mohora, D. Boboc *Machine tools, Attempt and reception*, Editura Tehnică, Bucharest, 1998;

- [12] V. Moraru, etc. Processing centers, Technical Publishing House, Bucharest, 1980;
- [13] V. Moraru, et al. Special machine tools, Didactic and Pedagogical Publishing House, Bucharest, 1982;
- [14] E. Seracin *Electromechanical Equipment of Industrial Enterprises*, Didactic Publishing House and Ogic Pedag, Bucharest, 1980;
- [15] Al. Vaida, et al. Design of machine tools, Didactic and Pedagogical Publishing House, Bucharest, 1980;
- [16] D. Zetu, et al. Automatic and command machine tools, Didactic and Pedagogical Publishing House, Bucharest, 1982;
- [17] ***Technical book Electromechanical tilaj.

9. Corroboration of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

The content of the Discipline Sheet is adapted and meets the requirements imposed by the labor market, being approved by social partners, professional associations and employers in the field related to the bachelor's program.

10. Evaluation

Activity	10.1 Assessment criteria	10.2 Assessment methods	10.3 Share of
Type			final grade
10.4 Course	Exam (duration 3 hours): - For note 5: all subjects must be treated to minimum standards; - For grades >5 all topics must be treated to maximum standards.	"The assessment can be done face-to-face or online" Written and oral: -Written: 3 topics, (duration 2 hours); -Oral: 2 subjects (interpretations of electrical diagrams, block operating schemes, hydraulic and pneumatic schemes - duration 1 hour).	50 % (E)
10.5. Laboratory	Assessment: - For grade 5: all tests and the final test must be treated to minimum standards; - For >5 marks all tests and the final test must be treated to maximum standards.	"The assessment can be done face-to-face or online" - All laboratory works must be performed and handed over the reports (exam admission condition); - It isvalued by test at each laboratory work; - It'sthe final valuation at the lab meeting No. 14; - The recoveryof four laboratory works is allowed (30%).	45% (L); 0,5% (R).

- Components of the note: Examination (E), Laboratory (L) and Report / Synthesis Material (R);
- Formula for calculating the note: N (Final Note)=0.54E+0.45L+0.05R;
- Credit requirement: $N\geq 5$; $L\geq 5$; $R\geq 5$.

10.6. Minimum performance standard: The student is able to know the principle of operation of a machine tool and to correctly elaborate an electrical, hydraulic and pneumatic actuator scheme. Design of an electromechanical installation of low complexity. He can perform a work by responsibly performing role-specific tasks in a team.

Date of completion

29.0 8.202 2

Signature of the course holder Signature of the laboratory holder Head of papers dr.ing. Gal Teofil Ovidiu Head of works dr.ing. Gal Teofil Ovidiu

E - mail:tgal@uoradea.ro

Date of approval in the department

01.09.2022

Signature of the director of the department Prof.univ.dr.ing.inf. Francis – John Hathazi

Date of approval in the Faculty Council 23.09.2022

Signature of the Dean Prof.univ.dr.ing. Mircea Gordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		Ele	ectri	cal drives I			
2.2 Holder of the su	ubject	t	Pro	of. P	hD eng. Helga Silaghi			
2.3 Holder of the academic			Lee	ct. P	hD eng. Diana Sas			
laboratory/project								
2.4 Year of study	Ш	2.5 Semeste	er	6	2.6 Type of the	Ex	2.7 Subject regime	DD
					evaluation		_	

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic laboratory/project	2/-
3.4 Total of hours from the curriculum		Of which: 3.5	28	3.6 academic	28/-
		course		laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes				20	
Supplementary documentation using the library, on field-related electronic platforms and in				6	
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			14		
Tutorials					
Examinations			4		
Other activities.					

3.7 Total of hours for	44
individual study	
3.9 Total of hours per	100
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

Te requisites (where applicable)				
4.1 related to the	(Conditions)			
curriculum				
4.2 related to skills				

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	ific skills acquired
Professional skills	C3. Adequate application of knowledge on energy conversion, electromagnetic and mechanical phenomena specific to static, electromechanical converters, electrical equipment and electromechanical drives C5. Automation of electromechanical processes
Transversal skills	TC1. Identification of the objectives to be achieved, available resources, conditions to complete them, working stages, working times, associated deadlines and risks

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	• The discipline has as objective the familiarization of the students with the field
general	of electric drives. Theoretical and practical knowledge on the technique of
objective of	electric drives is provided, as well as research, design and use of electric drive
the subject	systems with DC and AC machines.
7.2 Specific	• The course aims to present the theoretical elements of the technique of electric
objectives	drives, electric drives with DC and AC machines
	• The laboratory familiarizes students with practical aspects of the operation of the
	electric drive system, the control methods of electrical actions with DC and AC
	machines, including modern control methods with programmed logic and
	computer control.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1.1.Introduction in electrical drives 1.2.Structure and construction of electrical drive systems	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h
2.General problems of electrical drives technology 2.1.The object of the kinematics and dynamics of electrical drives. Motion equation 2.2.Reporting of couples, moments of inertia, strength and mass 2.3.Mechanical characteristics of electric machines and working mechanisms 2.4.Transmission of the movement from the electric machine to the	Free exposure, with the presentation of the course with video projector, on the board or online	2h 2h 2h 2h
3.Electrical drives with DC machines 3.1.Electrical drives with DC machines 3.2. Drives with permanent magnets direct current machines 3.3.Reversible drives with DC machines	Free exposure, with the presentation of the course with video projector, on the board or online	4h 2h 2h
4.Electrical drives with asynchronous machines4.1.General relationships and mechanical features for electrical drives	Free exposure, with the	2h
with asynchronous machines 4.2.Methods of starting for electrical drives with asynchronous machines	presentation of the course with video projector,	2h 2h
4.3.Braking methods for electrical drives with asynchronous	on the board or online	211

machines	2h
4.4. Speed control for electrical drives with asynchronous machines	

Bibliography

- 1. SILAGHI H., SPOIALĂ V., SILAGHI M. Acționări electrice, Editura Mediamira, Oradea, 2009
- 2. SILAGHI, H., SPOIALĂ, VIORICA, Acționări electrice-probleme fundamentale și noțiuni de proiectare, Ed. Universității din Oradea, 2002
- 3. SILAGHI H., SILAGHI M. Sisteme de actionări electrice cu masini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIALĂ D., SPOIALĂ VIORICA, Mașini electrice și sisteme de acționări electrice, vol.II, Ed. Universității din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIALĂ, HELGA SILAGHI, Acționări electrice speciale, Editura Universității din Oradea, 2010

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Presentation of the laboratory, of the labor protection norms and of the conventional signs specific to the field of electric drives. Methods and schemes for starting DC motors Using the Simulink program to simulate DC motors with separate excitation drives Methods and schemes for starting asynchronous motors Presentation of the ASMA program used for computer simulation of asynchronous machine drives Changing the speed of drives with asynchronous machines by changing the frequency of the supply voltage Closing the situation at the laboratory. 	methods Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part	Observations 2h 2h 2h 2h 2h 2h 2h 2h 2h
7. Closing the situation at the laboratory.	of the work under the guidance of the teacher	211

Bibliography

- Silaghi H., SpoialĂ V., Costea C. Acţionări electrice , Îndrumar de laborator, Lito Universitatea din Oradea, 2008
- 2. Viorica Spoială, Helga Silaghi, Dragoş Spoială Acţionări electrice. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Ediţie CD-ROM, 140 pag, 2014

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Electromechanics in other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	70 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		

	subjects, without presenting details on them For 10: thorough knowledge of all subjects is required		
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

29.08.2022

Date of endorsement in the department:

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

1. Data related to the study program

1. Duta related to the study program	
1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information
	Technology
1.3 Department	Electrical engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subje	ject	.	Mi	crop	rocessor Systems			
2.2 Holder of the subject		Lect. PhD eng. Kovendi Zoltan						
2.3 Holder of the aca	ader	nic	Lect. PhD eng. Kovendi Zoltan					
laboratory/project								
2.4 Year of study I	III	2.5 Semeste	er	6	2.6 Type of the	VP	2.7 Subject regime	DD
·					evaluation			

⁽I) Impusă

3. Total estimated time (hours of didactic activities per semester)

	tres per semiester,			
3	of which: 3.2	2	3.3 seminar/laboratory/project	-/1/-
	course			
42	Of which: 3.5	28	3.6 seminar/laboratory/project	-/14/-
	course			
				33
				hours
Study using the manual, course support, bibliography and handwritten notes				
Supplementary documentation using the library, on field-related electronic platforms and in field-related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				
Tutorials				
Examinations				
Other activities.				
	3 42 bibliog	course 42 Of which: 3.5 course bibliography and handwritte library, on field-related elect	3 of which: 3.2 2 course 42 Of which: 3.5 28 course bibliography and handwritten no library, on field-related electronic	3 of which: 3.2 2 3.3 seminar/laboratory/project course 42 Of which: 3.5 28 3.6 seminar/laboratory/project course bibliography and handwritten notes library, on field-related electronic platforms and in field-related

3.7 Total of hours for	33
individual study	
3.9 Total of hours per semester	75
3.10 Number of credits	3

4. Pre-requisites (where applicable)

	e upplicacio)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of the	- Attendance at least 50% of the courses	
course	- The course can be held face to face or online	
5.2.for the development of the	- Mandatory presence at all laboratories;	
academic laboratory/project	- The laboratory/project can be carried out face to face or online	

- Students come with the observed laboratory works - A maximum of 4 works can be recovered during the semester (30%); - The frequency at laboratory hours below 70% leads to the
restoration of the discipline

6. Spec	cific skills acquired
	C1. Using knowledge of mathematics, physics, measurement, technical graphics, mechanical engineering, chemical, electrical and electronic engineering in control systems engineering
Professional skills	C5. Application development and implementation of algorithms and automatic management structures, using the principles of project management, programming environments and technologies based on microcontrollers, signal processors, programmable logic controllers, embedded systems
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	 Assimilation by students of the necessary notions for the design and use of micrprocessor systems. In this sense the discipline approaches micrprocessor systems, hardware structures and their applications. The family of Intel microprocessors (I8086, Pentium I-IV), memory and interface circuits are shown. The laboratory works study the charactheristics and operation of microprocessor and support circuits with the experimentation of the operation and charactheristics of support circuits with the elaboration and running programs in Assembly language for a microsystem with 80C51 microcontroller
7.2 Specific objectives	 Creating the ability to design and use microprocessor systems Familiarizing students with the arhitecture of the microprocessor Identifying and exploiting the resources of a microprocessor system Highlighting the pecularities of communication in microprocessor systems and input-output operations Creating the skills to design a hardware system witch microprocessos or microcontroller

8. Contents*

o. Contents		
8.1 Course	Teaching methods	No. of hours/
		Observations
Chapter 1. MICROPROCESSORS: 1.1. Introductory aspects; 1.2. Evolution	Free exposure, with	2 hours
and charactheristics of microprocessors.	the presentation of	
	the course with video	
	projector, on the	
	board or online	

Chapter 2 2. MICROPROCESSOR I8086: 2.1. Configuration of the terminals. 2.2. Internal structura of the microprocessor I8086.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 2. MICROPROCESSOR I8086 (continuation): 2.3. Internal registers of the microprocessor I8086.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 2. MICROPROCESSOR I8086 (continuation): 2.4. Connecting the main memory in I8086 systems	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 2. MICROPROCESSOR I8086 (continuation): 2.5. Input and output operations in I8086 microsystems	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 3. MICROPROCESSOR INTEL PENTIUM, PENTIUM MMX, PENTIUM II, PENTIUM III, PENTIUM IV: 3.1. Microprocessor Intel Pentium.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 3. MICROPROCESSOR INTEL PENTIUM, PENTIUM MMX, PENTIUM II, PENTIUM III, PENTIUM IV (continuation): 3.2. Microprocessor Intel Pentium MMX.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 3. MICROPROCESSOR INTEL PENTIUM, PENTIUM MMX, PENTIUM II, PENTIUM III, PENTIUM IV (continuation): 3.3. Microprocesorul Intel Pentium II.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 3. MICROPROCESSOR INTEL PENTIUM, PENTIUM MMX, PENTIUM II, PENTIUM III, PENTIUM IV (continuation): 3.4. Microprocessor Intel Pentium III. 3.5. Microprocessor Intel Pentium IV.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 3. MICROPROCESSOR INTEL PENTIUM, PENTIUM MMX, PENTIUM II, PENTIUM III, PENTIUM IV (continuation): Microprocessor Intel Dual-Core, Quad-Core.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 4. Motherboards: 4.1. Design modes; 4.2. Types of motherboards.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 5. Main memory: 5.1. Primary and secondary storage systems; 5.2. ROM memory; 5.3. RAM memory; 5.4. Cache memory; 5.5 Memory circuit	Free exposure, with the presentation of	2 hours

encapsulation techniques	the course with video projector, on the board or online	
Chapter 6. Sets of chips and support circuits: 6.1. Chipsets; 6.2. Chipset functions; 6.3. System controller; 6.4. Controller for peripherial devices; 6.5. Memory controller	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours
Chapter 7. BUS Extensions 7.1. BUS functions; 7.2. ISA şi EISA 7.3. VESA; 7.4. PCMCIA; 7.5. PCI.	Free exposure, with the presentation of the course with video projector, on the board or online	2 hours

Bibliography

- $1. \ \ Gergely \ E., Sisteme \ cu \ microprocesoare, \ Note \ de \ curs, \ \underline{http://egergely.webhost.uoradea.ro/materiale.html} \ .$
- 2. Hennessy J.L., Patterson D.A., Computer Architecture. A Quantitative Approach, Elsevier, USA, 2007.
- 3. Mueller S., Zacker C., PC depanare și modernizare, Editura Teora, 2007.

 Balch M., Complete digital design. A Comprehensive Guide to Digital Electronics and Computer System Architecture, McGraw-Hill, USA, 2003.

5. Gergely E., ş.a., Sisteme cu microprocesoare, partea I, Curs, Lito Universitatea din Oradea, 1999.

8.2 Academic laboratory	Teaching methods	No. of hours/
1. Presentation of the laboratory, of the labor protection norms and of the conventional signs.	Summary of the papers and practical demonstration using the equipments from the laboratory	Observations 2 hours
2. Notions of boolean algebra, representation and minimization of logical functions by analitical methods and Veith-Karnaugh diagrams	Summary of the papers and practical demonstration using the equipments from the laboratory	2 hours
3. Study of multiplexors	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
4. Study of decoders and demultiplexors	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
5. Study of bistabiles JK asynchronous, synchronously, master-slave and type T	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
6. Study of synchronous and asynchronous counters	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
7. Study of registers	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
8. Description of the microcontroller INTEL 80C51.	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
9. Studying the way of work with mon552mv.exe.	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
10. Internal memory, registers with special functions (SFR) at microcontroller 80C51.	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
11. Counters/Timers T0 and T1 of microcontrollers 80C51	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
12. Closing the situation of the laboratory	Summary of the papers and practical demonstration using the equipments from the laboratory	1 hour
Bibliography		

- 1. Gavris M., s.a. Sisteme cu microprocesoare, Îndrumător de laborator, Universitatea din Oradea, 1996
- 2. Nagy Z.T., Codoban A. Gergely E.I., Microcontrolere în automatizări, Îndrumător de laborator, Universitatea din Oradea, 2005.
- 3. Murdocca M.J., Heuring V. P., Principles of computer architecture, Prentice Hall, 2000.
- 4. Rosch W. L., Totul despre hardware, Editura Teora, 1999.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is in accordance with other university centers from the country and abroad. For a better adaptation to the requirements of the field of work, meetings were held both with representatives of the socio-economic environment and with professors with similar fields of interest

10. Evaluation

Type of	10.1 Evaluation criteria	10.2 Evaluation	10.3 Percent
activity		methods	from the final
			mark
10.4	- Minimum requirements for passing the exam(note 5):	The evaluation can	66,66%
Course	In accordance with the minimum performance standard	be done face-to-	
	- For 10 grade:	face or online	
	- thorough knowledge of the structure of microprocessor		
	systems		
	- thorough knowledge of microprocessor arhitecture;		
	- thorough knowledge of microsystems memory transfers		
	- thorough knowledge of communication between		
	hierarchical levels in microprocessor systems		
	- thorough knowledge of input-output operations		
10.5	- Minimum requirements for passing the exam(note 5):	The evaluation can	33,33%
Laboratory	In accordance with the minimum performance standard	be done face-to-	
	- For 10 grade:	face or online	
	- thorough knowledge of the structure of the Intel		
	80C51microcontroller		
	- thorough knowledge of the internal memory and		
	registers of the Intel 80C51 microcontroller		
	- thorough knowledge of the counters/timers of the Intel		
	80C51 microcontroller		
	- thorough knowledge of Intel 80C51 microcontroller		
10 6 10 .	programming		

10.6 Minimum performance standard:

Course:

- knowledge regarding the structure of microprocessor systems
- knowledge of microprocessor architecture
- knowledge regarding myrosystems memory transfers
- knowledge of input-output operations

Laboratory:

- knowledge regarding the structure of the INTEL 80C51microcontroller;
- knowledge of programming the INTEL 80C51 microcontroller

Completion date:

29.08.2022

Date of endorsement in the

department: 22.09.2022

Date of endorsement in the Faculty

Board: 23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			Elec	ro-hydro-pneumati	c systems		
2.2 Holder of the subject			Lect	Lecturer phd.eng. Arion Mircea Nicolae			
2.3 Holder of the academic seminar/laboratory/project			Lect	urer phd.eng. Arion	Mircea Nicol	ae	
2.4 Year of study 3 2.5 Semester		6	2.6 Type of the evaluation	Vp - Continuous Assessment	2.7 Subject regime	Specialized Discipline	

3. Total estimated time (hours of didactic activities per semester)

10tal estimated time (nours of didactic	activit	les per semester)			
3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
		course		seminar/laboratory/project	
Distribution of time					36
					hours
Study using the manual, course support, bibliography and handwritten notes				2	
Supplementary documentation using the library, on field-related electronic platforms and in field-			2		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			2		
Tutorials				-	
Examinations					2
Other activities.					-

3.7 Total of hours for individual study	8
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

Tre requisites (where applicable)								
4.1 related to the	(Conditions) Technical drawing							
curriculum								
4.2 related to skills	Knowledge of symbols, graphics, specific to electrical diagrams.							

5.1. for the development of	The course can be presented online or face to face, in the amphitheater
the course	with modern techniques available: Video projector, Screen, Blackboard,
	Oral speech

5.2.for the development of	- The laboratory can be conducted face to face or online
the academic	- The equipment related to the laboratory class;
seminary/laboratory/project	- Preparation of the report (synthesis material);
	- Carrying out all laboratory works;
	- A maximum of two laboratory works can be recovered (30%);
	- The participation at laboratory hours below 70% leads to the restoration
	of the discipline.

6. Specific skills acquired

	C6. Diagnosis, troubleshooting and maintenance of electrical systems and components
Professional skills	
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives	s of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	 The discipline has as objective the acquisition of basic, theoretical and practical
general	knowledge, regarding the design and operation of electro-pneumatic and electro-
objective of	hydraulic systems;
the subject	 Defining the basic concepts regarding the operation and maintenance of electro-hydro-
	pneumatic systems.
7.2 Specific objectives	The course aims to present the theoretical elements related to the design and operation of electro-pneumatic and electro-hydraulic systems.
3	 The laboratory familiarizes students with practical aspects regarding the operation of
	electro-pneumatic systems.

8. Contents*

o. contents		
8.1 Course	Teaching methods	No. of hours/
		Observations
1. COMPONENTS OF HYDRAULIC SYSTEMS		8
2. STRUCTURE OF ELECTRO-HYDRAULIC SYSTEMS		8
3. APPLICATIONS OF ELECTRO-HYDRAULIC		4
SYSTEMS.		
4. SPECIFIC COMPONENTS OF PNEUMATIC SYSTEMS		4
5. APPLICATIONS OF ELECTRO-PNEUMATIC		4
SYSTEMS.		

Bibliografie:

- 1. Arion M. Sisteme electro-hidro-pneumatice. Note de curs,
- 2. Barabas, T., Tripe, V. C.- "Sisteme şi echipamente electro-hidro-pneumatice de automatizare. *Aplicații*". Editura Univ.Oradea, 2003;
- 3. Bălășoiu, V. "Echipamente și sisteme hidropneumatice de acționare", Universitatea Tehnică Timișoara, 1992;
- 4.Cristea, P. "Echipamente hidraulice și pneumatice de automatizare", Lito. Institutul Politehnic Iași, 1986:
- 5. Velescu, C. "Aparate și echipamente hidraulice proporționale", Editura Mirton Timișoara, 2003.

8.2 Laboratory	Teaching methods	No. of hours/
		Observations
1. Training on work safety norms specific to the laboratory.	- Presentation of the paper	2
Presentation of laboratory works from the discipline Electro	(synthesis material);	
pneumatic and electro-hydraulic systems.		

	Tout manualina d	
	- Test regarding the theoretical knowledge	
	related to the laboratory;	
	- Interpretation of the	
	obtained results.	
		2
2. Study of the operation of the MR pneumatic manipulator	- Presentation of the paper	2
within the PN2800 station used in the laboratory;	(synthesis material);	
•	- Test regarding the	
	theoretical knowledge	
	related to the laboratory	
	experiments;	
	- Interpretation of the	
	obtained results.	
3. Study of the operation of the MP pneumatic manipulator	- Presentation of the paper	2
within the PN2800 station used in the laboratory;	(synthesis material);	
,,	- Test regarding the	
	theoretical knowledge	
	related to the laboratory	
	experiments;	
	- Interpretation of the	
	obtained results.	2
4. Study of the operation of the MR pneumatic manipulator	- Presentation of the paper	2
within the PN2000 station used in the laboratory;	(synthesis material);	
within the 11,2000 station ased in the laboratory,	- Test regarding the	
	theoretical knowledge	
	related to the laboratory	
	experiments;	
	- Interpretation of the	
	obtained results.	
5. Study of the semi-automatic operation of the ST2000 station	- Presentation of the paper	2
used in the laboratory;	(synthesis material);	
used in the laboratory,	- Test regarding the	
	theoretical knowledge	
	related to the laboratory	
	experiments;	
	- Interpretation of the	
	obtained results.	_
6. Throttle adjustment of the speed for a linear pneumatic	- Presentation of the paper	2
motor;	(synthesis material);	
	- Test regarding the	
	theoretical knowledge	
	related to the laboratory	
	experiments;	
	- Interpretation of the	
	obtained results.	
7. Closing the situation at the laboratory. Presentation of the	- Teaching laboratories,	2
laboratory reports.	by supporting them;	
	- It is allowed to recover	
	30% of the number of	
	laboratory works.	
D212 1		
Bibliography		
1 Chafan NACV C'	, A 1	» F1.
1. Ştefan NAGY- "Sisteme şi echipamente electro-hidro-p	oneumatice. Aplicații prac	nce", Editura
Univ.Oradea, 2015		

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program—

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	-Periodic check (duration 1/2/3 hours): - For grade 5: all subjects must be treated to minimum standards; - For grades> 5 all subjects must be treated to maximum standards;	- The evaluation can be done face to face or online - Week 7: IPV represents 50% of 0.5 VPF; - Week 14: VPII represents 100% of VPF or 50% of VPF (for those with VPI).	- 50 % of 0,5 VP _F ; - 100 % of 0,5 VP _F or 50% of VP _F (for the ones with the VP _I).
10.6 Laboratory	-For grade 5: all tests and the final test must be treated to minimum standards; -For grades> 5 all tests and the final test must be treated to maximum standards	The evaluation can be performed face to face or online - All laboratory work must be performed (VP condition); - The share of the laboratory is 50% of the NVP value (for each stage); - Recovery of two outstanding laboratories is allowed.	- The lab grade = 50% of the VP value for each stage.

10.8 Minimum performance standard:

- Carrying out the works under the coordination of a teacher, in order to solve specific problems of maintenance and diagnosis of electro-hydro-pneumatic systems by correctly evaluating the workload, the available resources, the necessary time of completion and the risks, under the conditions of application of the occupational safety and health norms.

Completion date:

29.08.2022

Date of endorsement in the department:

01.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject	ELECTRICAL MACHINES II - PROJECT						
2.2 Holder of the subject		Assoc. prof. PANTEA MIRCEA DĂNUŢ					
2.3 Holder of the academic	Asso	c. prof. PANTEA	A MIRCEA D	ĂNUŢ			
seminar/laboratory/project							
2.4 Year of study 3 2.5 Semester	er 5	2.6 Type of the	Vp -	2.7 Subject regime	Specialized		
	evaluation Continuous Discipline DD						
		Assessment					

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2 course		3.3 academic project	-/1/-
3.4 Total of hours from the curriculum	14	Of which: 3.5 course		3.6 academic project	-/14/-
Distribution of time					
Study using the manual, course support,	bibli	ography and handwritte	en note	es	12
Supplementary documentation using the library, on field-related electronic platforms and in field-					32
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					14
Tutorials					
Examinations					3
Other activities.					

3.7 Total of hours for	61
individual study	
3.9 Total of hours per	75
semester	
3.10 Number of credits	3

4. Pre-requisites(where applicable)

4.1 related to the	(Conditions) - ELECTRICAL MACHINES I	
curriculum		
4.2 related to skills	- Proper application of basic knowledge of electric machines	

5.1. for the development of the course	
5.2.for the development of the academic seminary/laboratory/project	The project allows the acquisition of design principles and skills, having at their disposal specific stands, with modules related to practical works, motors, transformers, oscilloscopes and measuring devices.

6. Spec	6. Specific skills acquired						
_	- C4. Design of electrica	l systems and their components					
Professional skills							
Transversal skills		the objectives to be achieved, available resources, conditions to complete orking times, associated deadlines and risks					

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	of the discipline (resulting from the grid of the specific competences acquired)
7.1 The	Putting into practice the notions learned in the course "Electric Cars II" in order to apply
general	them in industry applications
objective of	
the subject	
7.2 Specific	The project allows the acquisition of principles and skills of design and implementation
objectives	of systems containing three-phase electrical transformers and their development in order
	to obtain high performance

8. Contents*

8.4. PROJECT	Teaching	No. of hours/
	methods	Observations
Three-phase electrical transformer, synchronous machine, DC motor with separate excitation		2
Calculation of the main parameters	Video projector, slides	2
Determining the dimensions of the conductors and the window	in dialogues specific to the	2
Yield.	stages of the project	2
Checking mechanical stresses		2
Analysis of special regimes.		2
Verification and delivery		2

Bibliography

- 1. Pantea Mircea Design of electric cars Design notes
- 2. Carmen O. Molnar Electric cars. Course notes, Oradea 2012.
- 3. Carmen O. Molnar Electric cars. Laboratory guide, Oradea 2010, page 212.
- 4. Carmen O. Molnar The electrical transformer. Construction, theory, design. University of Oradea Publishing House, 2010, page 211. ISBN 978-606-10-0023-4.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is adapted to the requirements imposed by the labor market, and is agreed by the social partners, professional associations and employers in the field related to the bachelor program. The content of the discipline is found in the curriculum of Electromechanics and other university centers

that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.), and knowledge types of electric machines and how they work and design is a stringent requirement of employers.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.7 Project	-		100 %

10.8 Minimum performance standard:

- Description of the operating principles of transformers and direct current, synchronous and asynchronous electric machines.
- Basic knowledge of the construction and operation of electric machines
- Explanation and interpretation of operating modes, phenomena that occur in the operation of electric machines, electrical and electromechanical equipment
- Proper use of electrical machines and monitoring of electromechanical systems
- Design of a three-phase electrical transformer of complexity
- Carrying out tests for a low complexity electrical system; data analysis, measurement and interpretation

Signature of the Signature of the laboratory course holder project holder

Completion date:

29.08.2022

Ş.l.dr.ing. Pantea Mircea

S.l.dr.ing. Pantea Mircea

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building Corp V, floor 2, room V 213
Postal code 410087, Oradea, Bihor county, Romania
E-mail: mirceadanutpantea@gmail.com

Discord MirceaPD # 1994

Date of endorsement in the department:

01.09.2022

Signature of the department director

Prof.univ.dr.ing.inf. Francisc - Ioan HATHAZI

Contacts:

University of Oradea, Faculty of I.E.T.I.

Str. University, no. 1, Building Corp A, floor 2, room A 206 Postal code 410087, Oradea, Bihor county, Romania Tel: 0259-408172, E-mail: francisc.hathazi@gmail.com

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel .: 0259-408204, E-mail: mgordan@uoradea.ro

Date of endorsement in the Faculty Board:

23.09.2022

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel .: 0259-408204, E-mail: mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor
1.6 Study program/Qualification	Electromechanical / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			IN	DUS	TRIAL ELECTRONI	C SY	STEMS	
2.2 Holder of the subject			Lec	ct. Pł	D. Eng. MORGOŞ FL	ORIN	N LUCIAN	
2.3 Holder of the academic seminar/laboratory/project			Lec	et. Pł	D. Eng. MORGOŞ FL	ORIN	LUCIAN	
2.4 Year of study	III	2.5 Semesto	er	8	2.6 Type of the evaluation	VP	2.7 Subject regime	SD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
		course		seminar/laboratory/project	
Distribution of time					36ho
					urs
Study using the manual, course support, bibliography and handwritten notes					16
Supplementary documentation using the library, on field-related electronic platforms and in field-				8	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				4	
Tutorials				5	
Examinations 3				3	
Other activities.				-	

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	78
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	The course can be face to face or online
the course	
5.2.for the development of	Laboratory with specific endowments. The laboratory can be face to face or
the academic	online
seminary/laboratory/project	

6. Spec	ific skills acquired
	C3. Use of fundamental knowledge of Electrotechnics
Professional skills	3.2 Explanation of the constructive principles of the component elements (electrical appliances, electrical machines, static converters, etc.)
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	the discipline (resulting from the grid of the specific competences acquired)
7.1 The general	The discipline aims to familiarize students with the field of the power
objective of the	electronics and especially with the electromagnetic converters. Presentation of
subject/discipline	the fundamental problems of switching the main electronic power devices in
	conditions of minimizing the power losses, command methods leading to
	commutation with minimal losses and applications such as voltage variator,
	voltage converters.
7.2 Specific	- Description of the functioning principles of the converters
objectives	- Explanation and interpretation of the functioning regimes of converters
	- Solving common problems in the field of converters using dedicated software
	packages and appropriate computer aided design (CAD) tools (ORCAD,
	MULTISIM)
	- Evaluate the results obtained from the use of software packages and computer
	aided design (CAD) tools in solving problems in the field of converters
	- Deepening the knowledge gained from this course and forming practical skills

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Introductory notions. The place and role of converters in energy flow.	Interactive lecture, video projection	2
2. Power semiconductor elements	Interactive lecture, video projection	2
3. Choice, verification and protection of the power semiconductor elements	Interactive lecture, video projection	2
4. AC - DC converters	Interactive lecture, video projection	2
5. AC voltage inverters. Single-phase variators	Interactive lecture, video projection	2
6. AC voltage inverters. Three-phase variators	Interactive lecture, video projection	2
7. Cycloconverters	Interactive lecture, video projection	2

8. DC voltage variators. The step-down DC voltage variator	Interactive lecture, video projection	2
9. DC voltage variators. The step-up DC voltage variator	Interactive lecture, video projection	2
10. Voltage and frequency converters. The principle of operation and the scheme of principle	Interactive lecture, video projection	2
11. Single phase inverters with AM modulation	Interactive lecture, video projection	2
12. Three-phase voltage inverters with AM modulation	Interactive lecture, video projection	2
13. Three-phase current inverters with AM modulation	Interactive lecture, video projection	2
14. Voltage and frequency converters with PWM modulation	Interactive lecture, video projection	2

- 1 N.D. Trip, A. Gacsádi, D. Scurtu, *Electronică Industrială îndrumător de laborator*, Editura Universității din Oradea, 2005.
- 2. V. Popescu, D. Lascu, D. Negoitescu, Convertoare de putere în comutatie. Aplicatii Editura de Vest, Timișoara, 1999
- 3. V. Popescu, Electronică de putere, Editura de Vest, Timișoara, 1998.
- 4. P. Constantin, Ş. Bîrcă-Gălăteanu, ş.a. Electronică Industrială, Editura Didactică și Pedagogică, București, 1983
- 5. A. Kelemen, M. Imecs, *Electronică de putere*, Editura Didactică și Pedagogică, București, 1983
- 6. T. Maghiar, K. Bondor, s.a. *Electronică Industrială*, Editura Universității din Oradea, 2001
- 7. I. Matlac, Convertoare electroenergetice, Editura Facla, Timisoara, 1987
- 8. V. Popescu, Stabilizatoare de tensiune în comutatie, Editura de Vest, Timișoara, 1992
- **9.** S. Florea, I. Dumitrache, V. Găburici, Fl. Munteanu, S. Dumitriu, I Catană, *Electronică industrială și automatizări*, Editura Didactică și Pedagogică, București, 1980
- 10. Convertoare statice- Suport curs- Inginerie Electrică și Calculatoare Prof.dr.ing. Mihaela Popescu
- **11.** Ş. Bîrcă-Gălăteanu, D.A. Stoichescu, P. Constantin, *Electronică de putere. Aplicțtii*, Editura Militară, București, 1991

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory. Labor protection. General information on	Work in groups	2
laboratory activity.	of 4-5 students,	
2. Command of thyristors and diodes with the help of dedicated circuits	explanations and	2
3. AC - DC converters	discussions in the	2
4. Single-phase AC voltage variator	laboratory	2
5. DC voltage variator	(including using	2
6. Single phase inverters with AM modulation	video projection),	2
7. Recovery of laboratories. Final evaluation.	individual work	2
	for the	
	preparation of	
	laboratory reports	
	and	
	measurements on	
	experimental	
	assemblies. Using	
	Orcad and	
	Multisim	
	simulation	
	programs.	

Bibliography

1. N.D. Trip, A. Gacsádi, D. Scurtu, *Electronică Industrială - îndrumător de laborator*, Editura Universitătii din Oradea, 2005

2. V. Popescu, D. Lascu, D. Negoitescu, *Convertoare de putere în comutatie. Aplicatii* Editura de Vest, Timișoara, 1999 **3.** V. Popescu, *Electronică de putere*, Editura de Vest, Timișoara, 1998

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is in accordance with what is done in other university centers that have these specializations accredited. The experience gained in the relations with large employers from Bihor was taken into account in the students' internship activities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	1. Correct and complete presentation of knowledge about the power electronic	VP / testing theoretical and applicative knowledge Oral or written assessment.	60%
	circuits working in switching operation and also the interpretation of results. 2. Testing during the semester + course reports		10%
10.5 Academic seminar	-	-	-
10.6 Laboratory	Acquiring the theoretical knowledge necessary to carry out laboratory work and how to achieve practical applications.	Tests for evaluating theoretical and applicative knowledge and monitoring results	30%
10.7 Project	-	-	-

10.8 Minimum performance standard

Knowledge of the operation of the main electronic power devices working in switching and of the control methods of the electronic power circuits.

Criterion for grade 5: Knowledge of the operation of the main electronic power devices working in switching

Completion date:

29.08.2022

Signature of the course holder Lect. dr. eng. Lucian Morgoș E-mail: lmorgos@uoradea.ro

Signature of the laboratory holder Lect. dr. eng. Lucian Morgos

Date of endorsement in the department:

22.09.2021

Signature of the department director **Prof. dr. eng.** . **Francisc Ioan Hathazi**

E-mail: <u>ihathazi@uoradea.ro</u>

Date of endorsement in the department:

22.09.2021

Signature of the department director **Prof. dr. eng.Nistor Daniel Trip**

E-mail: dtrip@uoradea.ro

Date of endorsement in the Faculty

Board: 23.09.2020

Signature of the Dean

Prof. dr. eng.habil. IoanMirceaGordan

E-mail: mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	DEPARTMENT OF ELECTRICAL ENGINEERING
1.4 Field of study	ELECTRICAL ENGINEERING
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics
	Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject	•	US	E OI	F ELECTRICAL ENE	RGY	•	
2.2 Holder of the s	ubjec	t	Cor	nf.dr	ing. BANDICI LIVIA	\		
2.3 Holder of the academic seminar		Coı	nf.dr	ing. PAŞCA SORIN -	- Lab	oratory / Project		
/ laboratory / project								
2.4 Year of study	IV	2.5 Semeste	er	8	2.6 Type of the	Ex	2.7 Subject regime	DS
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	6	of which: 3.2	2	3.3 academic	2
		course		seminar/laboratory/project	2
3.4 Total of hours from the curriculum	84	Of which: 3.5	28	3.6 academic	28
		course		seminar/laboratory/project	28
Distribution of time					hou
					rs
Study using the manual, course support,	Study using the manual, course support, bibliography and handwritten notes				7
Supplementary documentation using the library, on field-related electronic platforms and in field-			4		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			4		
Tutorials			2		
Examinations			3		
Other activities.					

3.7 Total of hours for	20
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

Wife requisites (where appreciate)					
4.1 related to the	Electrical engineering, Electrical installations				
curriculum					
4.2 related to skills	Knowledge of the symbols, specific graphics, electrical diagrams.				

5.1. for the development of the course	Video projector, computer.The course can be held face to face or online.
5.2.for the development of	- Equipment related to laboratory hours;
the academic laboratory	- Preparation of the report, knowledge of the notions contained in the laboratory work to be performed (synthesis material);
	- Carrying out all laboratory work.

	- The laboratory can be held face to face or online.			
5.3. for the development of	Attendance at project classes: at least 80%.			
the academic project	Presentation during the project classes of the studied calculations and methods.			
FJ	Handing in the project in the last meeting at the end of the semester.			
6. Specific skills acquired				
C3. Adequate applicati	on of knowledge on energy conversion, electromagnetic and mechanical			
phenomena specific to st	atic, electromechanical converters, electrical equipment, and electromechanical			
5 drives	drives			
C.5. Automation of electron	C.5. Automation of electromechanical processes			
ofe Ills				
A phenomena specific to standard phenomena specific to standar				

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	The course "Use of electrical energy" aims to familiarize the students with the study and usefulness of equipment used in lighting systems, respectively in welding. Students have the opportunity to get acquainted with various lighting and welding installations, learn practical skills in their construction, sizing, operation, and maintenance.
7.2 Specific objectives	The laboratory works are designed to provide future engineers with practical skills in the design, construction, research, operation, repair, and maintenance of lighting and welding installations.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
I. General concepts on the use of electrical energy	Projector.	2
	Intercalated	
	student	
	contributions are	
	requested on	
	subject-specific	
	topics. Some	
	courses take	
	place by teaching	
	subjects and	
	student debates.	
II. Production of light radiation	Idem	2
2.1. Light radiation		
2.2. Light generating phenomena		
2.3. Photometric quantities and units		
2.4. Behaviour of light in contact with different materials	Idem	2
2.5. Photometric measurements		
III. Electrical light sources	Idem	2
3.1. Classification of light sources		
3.2. Incandescent light sources		
3.3. Light sources with discharges	Idem	2
3.4. Light sources with gas discharge	Idem	2
IV. Luminaires and equipment used in lighting systems	Idem	2
4.1. Luminaires		
4.2. Characteristics of luminaires		
4.3. Classification of luminaires		
4.4. Luminaires for incandescent filament lamps	Idem	2
4.5. Luminaires for hollow fluorescent lamps		
4.6. The main characteristics of luminaires for lamps with high pressure	Idem	2
mercury vapour discharge and fluorescent balloon		
4.7. Projectors		
V. Electrical welding of metals	Idem	2
5.1. Classification of joints		
5.2. The phenomenology of the electric arc		
5.3. Study patterns of the electric arc in welding processes	Idem	2
5.4. The stability of the source-electric arc system	Idem	2
5.5. The transfer of material in the welding process with fused electrode		

5.6. Welding processes	Idem	2
5.6.1. Manual arc welding, with wrapped electrode		
5.6.2. Arc welding in controlled atmosphere, with fused electrode		
5.6.3. Arc welding in controlled atmosphere	Idem	2
5.6.4. Wrapped arc welding, with fused electrode		

- 1. Livia Bandici, Dorel Hoble *Utilizări ale energiei electrice în echipamentele de iluminat și sudură*. Editura Universității din Oradea, 2009.
- 2. Livia Bandici, Dorel Hoble *Utilizări ale energiei electrice*. Editura Universității din Oradea, 2007.
- 3. C. Bianchi, ş.a Sisteme de iluminat interior şi exterior. Concepție, calcul, soluții. Editura MatrixRom, București, 2014.
- 4. C. Bianchi, ş.a *Proiectarea instalațiilor de iluminat*. Editura Tehnică, București, 1981.
- 5. C. Bianchi Luminoteca. Aspecte fundamentale și applicative, Vol. I.. Editura Tehnică, București, 1990.
- 6. T.Maghiar, D.Hoble, L.Bandici *Instalații și utilizarea energiei electrice*. Editura Universității din Oradea, 2000.
- 7. Th. Miclescu, ş.a. *Utilizări ale energiei electrice*. Editura Didactică și Pedagogică, București, 1980.
- 7. I. Şora Utilizări ale energiei electrice. Editura Facla, Timișoara, 1984.
- 8. Marilena Ungureanu, M. Chindriș, I. Lungu *Utilizări ale energiei electrice*. Editura Didactică și Pedagogică, București, 1999.

9. Şurianu F.D. - Utilizarea energiei electrice în industrie și mari consumatori. Editura MIRTON, Timișoara, 1997.

8.2 Laboratory	Teaching	No. of hours/
6.2 Laboratory	methods	Observations
1 Description of the social and the laboration for the social description		
1. Presentation of the works and the laboratory for the use of electrical	In the first	2
energy. Specific labor protection rules	laboratory hour,	
	the notions	
	related to labor	
	protection	
	specific to	
	electrical lighting	
	and welding	
	installations will	
	be presented by	
	the teacher	
	coordinating the	
	laboratory works.	
	In the second part	
	of the laboratory	
	a theoretical	
	application will	
	be solved.	
2. Notions of photometry. Applications	Presentation by	2
	students of the	
	report prepared	
	(synthesis	
	material). Solving	
	a theoretical	
	application.	
	Interpretation of	
	the obtained	
	results.	
3. Experimental determination of the characteristics of lighting fixtures	- Presentation by	2
or any or more of the characteristics of fighting fixtures	students of the	<u>~</u>
	report prepared	
	(synthesis	
	material);	
	- Test regarding	
	the theoretical	
	knowledge	
	related to the	
	laboratory;	
	- Carrying out	
	experimental	
	determinations;	
	- Interpretation of	

	the obtained	
	results.	
4. Experimental study of incandescent lamps. Modification of the energetic	Idem	2
and functional parameters of the incandescent lamp to variations of the		
voltage of the electric supply network		
5. Experimental study of low pressure gas and metal vapor discharge lamps	Idem	2
6. Experimental study of lamps with high pressure gas and metal vapor	Idem	2
discharges		
7. New trends in electric lighting. LED lamps. Light panels	Idem	2
8. Modification of the luminous flux emitted by the electric lamp	Idem	2
9. Electric arc in alternating current	Idem	2
10. Sizing of an electric arc welding transformer - part I	Idem	2
11. Sizing of an electric arc welding transformer - part II	Idem	2
12. Sizing of an electric arc welding transformer - part III	Idem	2
13. Experimental study of the welding transformer with adjustable magnetic	Idem	2
shunt		
14. Evaluation of the knowledge acquired during the laboratory hours.	Handing in and	2
Recovery of one missed laboratory.	presenting the	
	laboratory papers	
	and. Recovery of	
	a missed	
	laboratory.	

- 1. Livia Bandici, Dorel Hoble Utilizări ale energiei electrice în echipamentele de iluminat și sudură. Editura Universității din Oradea, 2009.
- 2. Livia Bandici, Dorel Hoble, Claudiu Mich Utilizarea energiei electrice. Proiectare în sistemele de utilizare. Editura Universității din Oradea, 2010.
- 3. Livia Bandici, Dorel Hoble *Utilizări ale energiei electrice*. Editura Universității din Oradea, 2007.
- 4. C. Bianchi, ş.a Sisteme de iluminat interior și exterior. Concepție, calcul, soluții. Editura MatrixRom, București, 2014.
- 5. C. Bianchi, ș.a *Proiectarea instalațiilor de iluminat*. Editura Tehnică, București, 1981.
- 6. C. Bianchi Luminoteca. Aspecte fundamentale și aplicative, Vol. I.. Editura Tehnică, București, 1990.
- 7. T Maghiar, D Hoble, S Pașca, M Popa Instalații și utilizarea energiei electrice Indrumător de laborator. Editura Universității din Oradea 1995.
- Th. Miclescu, ș.a. *Utilizări ale energiei electrice*. Editura Didactică și Pedagogică, București, 1980.
 I. Şora *Utilizări ale energiei electrice*. Editura Facla, Timișoara, 1984.

8.3 Project	Teaching	No. of hours/
	methods	Observations
Topic: Design of the electrical lighting installation related to an enclosure		
where industrial activity is carried out. Bibliography.		
Project content		
Chapter I. Interior lighting systems and conditions for achieving a		
comfortable light microclimate		
Chapter II. Optimal lighting solutions used in structural and civil		
engineering.		
Chapter III. Sizing of interior lighting installations.		
Chapter IV. Lighting system design. Conclusions		
Presentation of the project theme. Getting started with electrical lighting	Discussions on	2
installations	how to write the	
	project.	
Assignment of initial design data. Norms, guides, and related technical	Brief approach to	2
prescriptions	the main	
	problems related	
	to interior	
	lighting systems	
	and the optimal	
	conditions for	
	achieving a	
	comfortable light	
	microclimate.	
Establishing the conditions imposed on the electrical lighting installation.	Explanations on	2
Choosing the type of source	choosing the	

	optimal lighting solutions.	
Photometric calculation by the use factor method. Sizing of the interior lighting installation	Explanations on choosing the optimal lighting solutions.	4
Quantitative and qualitative checks. Point-by-point calculation	In the first part of the meeting there will be a verification of the theoretical part presented by the students. In the second part there will be a presentation of the notions related to the sizing of lighting installations.	4
Sizing of the outdoor lighting installation of the building	Presentation of calculation equations	2
Plan and scheme of the electrical lighting installation	Presentation of checking methods	2
Circuit sizing and choice of protection and switching devices	Presentation of circuit sizing methods and the choice of protection and switching devices.	2
Checking of the solution obtained by using dedicated software (DIALUX, ELBALUX, PHILIPS LIGHTING etc.)	Presentation of checking methods and lighting quality conditions.	6
Final evaluation of the project	Presenting and handing in the elaborated project.	2

- 1. Livia Bandici, Dorel Hoble, Claudiu Mich *Utilizarea energiei electrice. Proiectare în sistemele de utilizare*. Editura Universității din Oradea, 2010.
- 2. Livia Bandici, Dorel Hoble *Utilizări ale energiei electrice în echipamentele de iluminat și sudură*. Editura Universității din Oradea, 2009.
- 3. Livia Bandici, Dorel Hoble *Utilizări ale energiei electrice*. Editura Universității din Oradea, 2007.
- 4. C. Bianchi, ș.a Sisteme de iluminat interior și exterior. Concepție, calcul, soluții. Editura MatrixRom, București, 2014.
- 5. C. Bianchi, s.a Proiectarea instalațiilor de iluminat. Editura Tehnică, București, 1981.
- 6. C. Bianchi Luminoteca. Aspecte fundamentale și applicative, Vol. I.. Editura Tehnică, București, 1990.
- 7. T Maghiar, D Hoble, S Paşca, M Popa *Instalații și utilizarea energiei electrice –Indrumător de laborator*. Editura Universității din Oradea, 1995.
- 8. T.Maghiar, D.Hoble, L.Bandici *Instalații și utilizarea energiei electrice*. Editura Universității din Oradea, 2000.
- 9. Th. Miclescu, ș.a. *Utilizări ale energiei electrice*. Editura Didactică și Pedagogică, București, 1980.
- 10. I. Şora *Utilizări ale energiei electrice*. Editura Facla, Timișoara, 1984.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is adapted and satisfies the requirements imposed by the labor market, being agreed by the social partners, professional associations, and employers in the field related to the bachelor's degree program.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.1 Course	- For grade 5: all subjects must be treated to minimum standards; For grades > 5 all subjects must be treated to maximum standards;	The evaluation can be done face to face or online. In order to pass the exam, each subject must be treated for at least grade 5.	60 %
10.2 Laboratory	In the last laboratory class, the students will present the laboratory works performed, i.e. the results obtained.	To be allowed to take part in the exam, all laboratory works must be performed laboratory = 20% of the value of the exam grade.	20%
10.3 Project	The project will be handed in during the last week of classes. Students will present the project in front of the teacher, the other students having the opportunity to intervene during the presentation.	For grade 6 - the elaborated project respects the format imposed by the elaboration procedure, i.e. the obtained results are close to the real ones; For grade 10 - the project is elaborated to maximum standards.	20 %

10.8 Minimum performance standard:

Design of components of a low complexity electrical system.

Development and testing of an electrical system analysis program.

Solving problems specific to electrical installations, correct assessment of workload, available resources, risks in the conditions of the application of occupational safety and health standards.

Completion date: 29.08.2022

Date of endorsement in the department: 01.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	DEPARTMENT OF ELECTRICAL ENGINEERING
1.4 Field of study	ELECTRICAL ENGINEERING
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics
	Bachelor of Engineering

2. Data related to the subject

Zi Duta i ciatea to t	110 50	Djece						
2.1 Name of the su	bject		EL	ECT	ROTHERMICS			
2.2 Holder of the s	ubjec	t	Co	nf.dr	ing. BANDICI LIVIA	\		
2.3 Holder of the academic seminar			Şef	Şef.lucr.dr.ing. GAL TEOFIL – Laboratory				
/ laboratory / projection	/ laboratory / project							
2.4 Year of study	IV	2.5 Semeste	er	7	2.6 Type of the	Ex	2.7 Subject regime	DS
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1
_		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes 5			5		
Supplementary documentation using the library, on field-related electronic platforms and in field-			5		
related places					
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	rtfolios	and essays	-
Tutorials					1
Examinations					3
Other activities.					-

3.7 Total of hours for	14
individual study	
3.9 Total of hours per	56
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

	- /
5.1. for the development of	- Video projector, computer;
the course	- The course can be held face to face or online;
	- Attendance: at least 50% of the courses.
5.2.for the development of	- The laboratory can be held face to face or online;
the academic	- The equipment related to the laboratory class;
seminary/laboratory/project	- Preparation of the report (synthesis material);

	 Carrying out all laboratory works; The recovery of one missed laboratory is allowed; Attendance at laboratory classes: less than 70% leads to the restoration of the discipline.
6. Specific skills acquired	
	ication of energy conversion knowledge, electromagnetic and mechanical tatic, electromechanical converters, electrical equipments and electromechanical

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	of the discipline (resulting from the grid of the specific competences dequired)
7.1 The	The course "Electrothermics" aims to familiarize students with the study and utility of
general	electrothermal equipment. Being a specialized discipline, its object is to present in a uniform
objective of	framework the electrothermal equipment for the conversion of electric energy into heat,
the subject	especially those specific to the industrial field.
the subject	Students have the opportunity to familiarize themselves with various electrothermal installations,
	to acquire practical skills regarding the building, sizing and operating of electrothermal
	installations, with the possibility to execute, maintain, exploit and repair them.
7.2 Specific	The laboratory is designed to provide future electromechanical engineers with practical skills in
objectives	designing, building, researching, operating, repairing and maintaining electrothermal
.	installations. The contents of the presented laboratory works are based on the need to deepen the
	problems presented in the course.
	Students have the possibility of identifying electrical circuits for electrothermal installations, to
	familiarize themselves with modern means of temperature measurement, of electrical parameters
	during electrothermal processes. They will understand the complexity and usefulness of these
	facilities and treat them as such. Knowledge is useful in forming skills to address specific issues
	faced by a specialist in the field of electromechanics.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
I. General problems with electrothermal installations	Projector. Intercalated student contributions are requested on subject-specific topics. Platforma e-learning a University of Oradea (https://e.uoradea.ro). Some courses take place by teaching subjects and student debates.	2
 II. Materials used in the construction of electrothermal equipment 2.1. Refractory materials 2.2. Heat insulating materials 2.3. Resistive materials 2.4. Materials for electrodes of electric arc furnaces III. Heat transfer in electrothermal equipment 3.1. Thermal conduction. 3.2. Thermal convection. 3.3. Thermal radiation. 3.4. Means for measuring temperature 	Idem	2
IV. Electrical heating heaters 4.1. Classification of heating systems with electrical resistance 4.2. Heaters	Idem	2

4.3. Main features of electrical resistance heating systems		
4.3.1. Constitutive elements		
4.4.1. Discontinuous direct-heating systems. 4.4.2. Continuous direct-		
heating systems	T 1	2
4.4.3. Direct heating ovens	Idem	2
4.4.3.1. Furnaces for grafting and for production of carborundum		
4.4.3.2. Glass melting furnaces		
4.4.3.3. Furnaces for the extraction and refining of aluminum		
4.4.3.4. Installations for direct water heating	T 1	
4.5. Installations with electrical resistance with indirect heating	Idem	2
4.6. Laboratory electric furnaces		_
4.7. Home appliances	Idem	2
4.8. Infrared heating		
V. Electric arc furnaces	Idem	2
5.1. Classification and areas of use		
5.2. The electric arc		
5.3. Electric arc furnaces with direct action for steel melting		
5.4. Electric arc furnaces power at continuous voltage	Idem	2
5.5. Electric arc and resistance furnaces.		
5.6. Vacuum melting electric arc furnaces		
5.7. Flow layer melting furnaces		
5.8. Plasma heating installations		
VI. Electromagnetic induction heating	Idem	2
6.1. The principle of heating by electromagnetic induction		
6.2. The penetration of the electromagnetic field and the power transmitted		
to the piece. The influence of material characteristics on penetration depth		
6.3. Electrical parameters of the inductor-body system	Idem	2
6.4. Energy indicators of electromagnetic induction heating		
6.5. Electrical equipment for electromagnetic induction heating		
6.6. Applications of electromagnetic induction heating	Idem	2
6.6.1. Melting pot induction furnaces for metals		
6.6.2. Channel induction furnace for melting metals		
6.6.3. Deep heating by electromagnetic induction	Idem	2
6.6.4. Cross-flow heating		
6.6.5. Surfacing		
6.6.6. Special applications of induction heating		
VII. Heating of dielectric materials	Idem	2
7.1. General notions on dielectric heating		
7.2. Capacitive heating	Idem	2
Distinguished		

- [1]. Livia Bandici. Electrotermie. Teorie și aplicații. Editura Universității din Oradea, 2016.
- [2]. Livia Bandici, Electrotermie. Editura Universității din Oradea, 2004.
- [3]. Livia Bandici, D. Hoble. Electrotermie. Îndrumător de laborator. Editura Universității din Oradea, 2000.
- [4]. Livia Bandici, *Electrotermie Aplicații*. Editura Universității din Oradea, 2003.
- [5]. D. Comșa, Instalații electrotermice industriale. Editura Tehnică București, 1986.
- [6]. N. Golovanov, I. Şora, ş.a. Electrotermie şi Electrotehnologii. Vol. I. Editura Tehnică, București, 1997
- [7]. A.E. Sluhoţki, S.E. Râşkin Inductoare pentru încălzirea electrică. Editura Tehnică Bucureşti, 1983.
- [8]. V. Firețeanu, Electrotermie. Culegere de aplicații. Editura Politehnică București, 1991
- [9]. V. Firețeanu, Procesarea electromagnetică a materialelor. Editura Politehnică București, 1995.
- [10]. Şora, V.Conta, D.Popovici, *Utilizări ale energiei electrice*. Editura Facla, 1983.
- [11]. M. Ungureanu, M. Chindriş, I. Lungu, *Utilizări ale energiei electrice*. Editura Didactică și Pedagogică București, 1999.

8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Work safety standards specific to electrothermal installations.	In the first hour	2
Transmission of heat. Theoretical Applications.	of the laboratory,	
	the coordinating	
	teacher will	
	present the	
	laboratory works,	
	the notions	
	related to work	

Means of temperature measurement. Experimental determinations.	safety, specific to electrothermal installations. In the second part of the laboratory, a theoretical application on the transmission of heat will be made. Presentation of	2
Study of the instantaneous water heating system. Experimental	the written report	
determinations.	(synthesis	
determinations.	material) by the	
	students;	
	Test on the	
	theoretical	
	knowledge	
	aquired during	
	the laboratory.	
	Interpretation of	
	the results.	
3. Study on the resistor furnace with indirect heating used for heat	Idem	2
treatments. Experimental determinations.		
4. Study on the infrared heating installation. Experimental determinations.	Idem	2
5. Study on the channel induction furnace. Experimental determinations.	Idem	2
6. Study on the induction heating installation for surface hardening of metals. Experimental determinations.	Idem	2
7. Assessment of the knowledge acquired during the laboratory classes.	- presenting and handing out the laboratory papers; - the recovery of one missed laboratory is allowed.	2
Bibliography	- the recovery of one missed laboratory is	

- [1]. Livia Bandici, D. Hoble. Electrotermie. Studii teoretice și aplicative. Editura Universității din Oradea, 2009.
- [2]. Livia Bandici, Electrotermie. Editura Universității din Oradea, 2004.
- [3]. Livia Bandici, D. Hoble. Electrotermie. Îndrumător de laborator. Editura Universității din Oradea, 2000.
- [4]. Livia Bandici, Electrotermie Aplicații. Editura Universității din Oradea, 2003.
- [5]. D. Comșa, *Instalații electrotermice industriale*. Editura Tehnică București, 1986.
- [6]. N. Golovanov, I. Şora, ş.a. Electrotermie şi Electrotehnologii. Vol. I. Editura Tehnică, București, 1997.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard For grades> 5 all subjects must be treated to maximum standards		

10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance	
	with the minimum	
	performance standard	

10.6 Minimum performance standard:

Design of components of a low complexity electrical system.

Solving problems specific to electrothermal installations, with the correct evaluation of the workload, of the available resources, of the necessary completion time and of the risks, in conditions of application of the norms of safety and health at work.

Principle of operation and composition of electrothermal installations.

Completion date: 29.08.2022

Date of endorsement in the department:

01.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	DEPARTMENT OF ELECTRICAL ENGINEERING
1.4 Field of study	ELECTRICAL ENGINEERING
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics
	Bachelor of Engineering

2. Data related to the subject

Zi Duta i ciatea to t	110 50	Djece						
2.1 Name of the su	bject		EL	ECT	ROTHERMICS			
2.2 Holder of the s	the subject Conf.dr.ing. BANDICI LIVIA							
2.3 Holder of the academic seminar Conf.dr.ing. BANDICI LIVIA – Project								
/ laboratory / project								
2.4 Year of study	IV	2.5 Semeste	er	7	2.6 Type of the	Cv	2.7 Subject regime	DS
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2		3.3 academic	1
_		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	14	3.6 academic	14
		course		seminar/laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					-
Tutorials					1
Examinations					
Other activities.					-

3.7 Total of hours for individual study	12
3.9 Total of hours per	26
semester	
3.10 Number of credits	1

4. Pre-requisites (where applicable)

4.1 related to the	Electrical engineering, Electrical engineering, Electrical installations
curriculum	
4.2 related to skills	Knowledge of symbols, specific graphics, electrical diagrams.

Cr College (Where approve	-,
5.1. for the development of	-Video projector, computer;
the course	- The project can be carried out face to face or online.
5.2.for the development of	- Equipment related to the development of project hours - calculation
the academic	technique;
seminary/laboratory/project	- Preparation of the theoretical report related to the project theme;
	- The project can be carried out face to face or online.

6. Specific skills acquired C.3. Appropriate application of energy conversion knowledge, electromagnetic and mechanical phenomena specific to static, electromechanical converters, electrical equipments and electromechanical drives

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	or the discipline (resulting from the grid of the specific competences acquired)
7.1 The general objective of the subject	The course "Electrothermics" aims to familiarize students with the study and utility of electrothermal equipment. Being a specialized discipline, its object is to present in a uniform framework the electrothermal equipment for the conversion of electric energy into heat, especially those specific to the industrial field. Students have the opportunity to familiarize themselves with various electrothermal installations, to acquire practical skills regarding the building, sizing and operating of electrothermal
	installations, with the possibility to execute, maintain, exploit and repair them.
7.2 Specific objectives	The suggested themes are designed to provide future engineers with practical skills in designing, building, researching, operating, repairing and maintaining electrothermal installations. Knowledge is useful in forming skills to address specific issues faced by a specialist in electrical engineering.

8. Contents*

8.1 Project	Teaching	No. of hours/
	methods	Observations
Suggested themes:	Choice of theme.	2
1. The calculation of the parameters of an electric furnace with	Discussions on	
indirect heating resistors.	how to elaborate	
2. The calculation of the parameters of an infrared heating installation	the project.	
for heating a vat.		
3. Designing an inductor for the electromagnetic induction heating of a cylindrical vat.		
4. The calculation of the parameters of an inductor using two frequencies for heating steel bars.		
5. The calculation of the parameters of an electromagnetic induction melting furnace.		
6. The calculation of the parameters of an installation for gluing wood		
rods by radio frequency heating.		
7. The calculation of the parameters of an inductor for heating a		
cylindrical vat.		
I. General notions on the heating process	A brief approach	2
II. Materials used in the construction of the installation	to the main issues	
	related to the	
	design and choice	
	of materials used	
	in the	
	construction of	
	the installation.	
III. The theoretical foundations of the calculation of the equipment	Explanations on	2
	how to calculate	
	the main	
	electrical	
	quantities and	
	methods of	
TXY FMI 1 1 2 Cut	determination.	2
IV. The calculation of the parameters of the electrothermal equipment	In the first part of	2
4.1. The electrical parameters of the system	the meeting, a	
4.2. Determination of the thermal parameters	review of the	
	theoretical part	
	presented by the	
	students will be	
	made. In the	
	second part, a	

	presentation of	
	the concepts	
	related to the	
	calculation of the	
	electrical and	
	thermal	
	parameters will	
	be made.	
4.4. Determination of the equivalent parameters of the heating assembly and	In the first part of	2
energy indicators	the meeting, a	
4.5. Determination of the capacitor battery to compensate for the power	review of the	
factor of the installation	calculations	
idetor of the installation	presented by the	
	students until this	
	stage will be	
	carried out. In the	
	second part, a	
	presentation of	
	how to calculate	
	the equivalent	
	parameters and	
	0,5	
	indicators of the	
	heating	
	equipment is	
	made.	
4.6. Determination of heating efficiency	During the first	2
4.7. The equivalent electrical scheme of the whole assembly. Conclusions	part of the	
·	meeting, a review	
	of the	
	calculations	
	presented by the	
	students will be	
	made. In the	
	second part, a	
	presentation of	
	how to calculate	
	the efficiency of	
	the processing,	
	respectively the	
	mode of drawing	
	the equivalent	
	electric scheme	
	will be made.	
Final project evaluation	Defence and	2
	handing out of	
	the elaborated	
	project.	
Bibliography	1 ± J	

- [1]. Livia Bandici, Electrotermie. Aplicații. (Îndrumător de proiectare). Editura Universității din Oradea, 2003.
- [2]. Livia Bandici, Electrotermie. Teorie și aplicații. Editura Universității din Oradea, 2016.
- [3]. Livia Bandici, D. Hoble, Electrotermie. Studii teoretice și aplicative. Editura Universității din Oradea, 2009.
- [4]. Livia Bandici, Electrotermie. Editura Universității din Oradea, 2004.
- [5]. D. Comșa, Instalații electrotermice industriale. Editura Tehnică București, 1986.
- [6]. N. Golovanov, I. Şora, ş.a., Electrotermie şi Electrotehnologii. Vol. I. Editura Tehnică, București, 1997.
- [7]. V. Firețeanu, Electrotermie. Culegere de aplicații. Editura Politehnică București, 1991.
- [8]. V. Firețeanu, Procesarea electromagnetică a materialelor. Editura Politehnică București, 1995.
- [9]. T. Leuca, Câmpul electromagnetic și termic cuplat Curenți turbionari. Editura Mediamira Cluj-Napoca, 1996.
- [10]. A.E. Sluhoţki, S.E. Râşkin, Inductoare pentru încălzirea electrică. Editura Tehnică Bucureşti, 1983.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the project themes is adapted and satisfies the requirements imposed by the labor market, being agreed by the social partners, professional associations and employers in the field related to the bachelor program.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.1 Project	_	The evaluation can be done face to face or online.	<u> </u>

10.2 Minimum performance standard:

Design of components of a low complexity electrical system.

Students have the opportunity to solve problems specific to electrothermal installations, the correct evaluation of the workload, of the available resources, of the necessary time.

Completion date:

29.08.2022

<u>Date of endorsement in the</u> department:

01.09.2022

<u>Date of endorsement in the Faculty Board:</u>

23.09.2022

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor
1.6 Study program/Qualification	Electromechanical / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		IN	INDUSTRIAL ELECTRONIC SYSTEMS				
2.2 Holder of the s	ubjec	t	Lec	ct. Ph	D. Eng. MORGOŞ FL	ORIN	N LUCIAN	
2.3 Holder of the a seminar/laboratory			Lect. PhD. Eng. MORGOŞ FLORIN LUCIAN					
2.4 Year of study	III	2.5 Semeste	nester		2.6 Type of the evaluation	VP	2.7 Subject regime	SD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/-
1		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
		course		seminar/laboratory/project	
Distribution of time					36ho
				urs	
Study using the manual, course support, bibliography and handwritten notes				16	
Supplementary documentation using the library, on field-related electronic platforms and in field-			8		
related places					
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	tfolio	s and essays	4
Tutorials			5		
Examinations			3		
Other activities.					

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	78
semester	
3.10 Number of credits	3

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	The course can be face to face or online
the course	
5.2.for the development of	Laboratory with specific endowments. The laboratory can be face to face or
the academic	online
seminary/laboratory/project	

6. Spec	ific skills acquired
	C3. Use of fundamental knowledge of Electrotechnics
	3.2 Explanation of the constructive principles of the component elements (electrical appliances, electrical machines, static converters, etc.)
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

- · · · · · · · · · · · · · · · ·	the discipline (resulting from the grid of the specific competences acquired)
7.1 The general	The discipline aims to familiarize students with the field of the power
objective of the	electronics and especially with the electromagnetic converters. Presentation of
subject/discipline	the fundamental problems of switching the main electronic power devices in
	conditions of minimizing the power losses, command methods leading to
	commutation with minimal losses and applications such as voltage variator,
	voltage converters.
7.2 Specific	- Description of the functioning principles of the converters
objectives	- Explanation and interpretation of the functioning regimes of converters
	- Solving common problems in the field of converters using dedicated software
	packages and appropriate computer aided design (CAD) tools (ORCAD,
	MULTISIM)
	- Evaluate the results obtained from the use of software packages and computer
	aided design (CAD) tools in solving problems in the field of converters
	- Deepening the knowledge gained from this course and forming practical skills

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Introductory notions. The place and role of converters in energy flow.	Interactive lecture, video projection	2
2. Power semiconductor elements	Interactive lecture, video projection	2
3. Choice, verification and protection of the power semiconductor elements	Interactive lecture, video projection	2
4. AC - DC converters	Interactive lecture, video projection	2
5. AC voltage inverters. Single-phase variators	Interactive lecture, video projection	2
6. AC voltage inverters. Three-phase variators	Interactive lecture, video projection	2
7. Cycloconverters	Interactive lecture, video projection	2

8. DC voltage variators. The step-down DC voltage variator	Interactive lecture, video projection	2
9. DC voltage variators. The step-up DC voltage variator	Interactive lecture, video projection	2
10. Voltage and frequency converters. The principle of operation and the scheme of principle	Interactive lecture, video projection	2
11. Single phase inverters with AM modulation	Interactive lecture, video projection	2
12. Three-phase voltage inverters with AM modulation	Interactive lecture, video projection	2
13. Three-phase current inverters with AM modulation	Interactive lecture, video projection	2
14. Voltage and frequency converters with PWM modulation	Interactive lecture, video projection	2

- 1 N.D. Trip, A. Gacsádi, D. Scurtu, *Electronică Industrială îndrumător de laborator*, Editura Universității din Oradea, 2005.
- 2. V. Popescu, D. Lascu, D. Negoitescu, Convertoare de putere în comutatie. Aplicatii Editura de Vest, Timișoara, 1999
- 3. V. Popescu, Electronică de putere, Editura de Vest, Timișoara, 1998.
- 4. P. Constantin, Ş. Bîrcă-Gălăteanu, ş.a. Electronică Industrială, Editura Didactică și Pedagogică, București, 1983
- 5. A. Kelemen, M. Imecs, Electronică de putere, Editura Didactică și Pedagogică, București, 1983
- 6. T. Maghiar, K. Bondor, ş.a. Electronică Industrială, Editura Universitătii din Oradea, 2001
- 7. I. Matlac, Convertoare electroenergetice, Editura Facla, Timișoara, 1987
- 8. V. Popescu, Stabilizatoare de tensiune în comutatie, Editura de Vest, Timișoara, 1992
- **9.** S. Florea, I. Dumitrache, V. Găburici, Fl. Munteanu, S. Dumitriu, I Catană, *Electronică industrială și automatizări*, Editura Didactică și Pedagogică, București, 1980
- 10. Convertoare statice- Suport curs- Inginerie Electrică și Calculatoare Prof.dr.ing. Mihaela Popescu
- **11.** Ș. Bîrcă-Gălăteanu, D.A. Stoichescu, P. Constantin, *Electronică de putere. Aplicțtii*, Editura Militară, București, 1991

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory. Labor protection. General information on	Work in groups	2
laboratory activity.	of 4-5 students,	
2. Command of thyristors and diodes with the help of dedicated circuits	explanations and	2
3. AC - DC converters	discussions in the	2
4. Single-phase AC voltage variator	laboratory	2
5. DC voltage variator	(including using	2
6. Single phase inverters with AM modulation	video projection),	2
7. Recovery of laboratories. Final evaluation.	individual work	2
	for the	
	preparation of	
	laboratory reports	
	and	
	measurements on	
	experimental	
	assemblies. Using	
	Orcad and	
	Multisim	
	simulation	
	programs.	

Bibliography

1. N.D. Trip, A. Gacsádi, D. Scurtu, *Electronică Industrială - îndrumător de laborator*, Editura Universitătii din Oradea, 2005

2. V. Popescu, D. Lascu, D. Negoitescu, Convertoare de putere în comutatie. Aplicatii Editura de Vest, Timișoara, 1999 3. V. Popescu, Electronică de putere, Editura de Vest, Timișoara, 1998

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is in accordance with what is done in other university centers that have these specializations accredited. The experience gained in the relations with large employers from Bihor was taken into account in the students' internship activities.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the	
			final mark	
10.4 Course	1. Correct and complete presentation of knowledge about the power electronic	VP / testing theoretical and applicative knowledge Oral or written assessment.	60%	
	circuits working in switching operation and also the interpretation of results. 2. Testing during the semester + course reports		10%	
10.5 Academic seminar	-	-	-	
10.6 Laboratory	Acquiring the theoretical knowledge necessary to carry out laboratory work and how to achieve practical applications.	Tests for evaluating theoretical and applicative knowledge and monitoring results	30%	
10.7 Project	-	-	-	

10.8 Minimum performance standard

Knowledge of the operation of the main electronic power devices working in switching and of the control methods of the electronic power circuits.

Criterion for grade 5: Knowledge of the operation of the main electronic power devices working in switching

Completion date:

29.08.2022

Signature of the course holder

Signature of the laboratory holder Lect. dr. eng. Lucian Morgos Lect. dr. eng. Lucian Morgos

E-mail: lmorgos@uoradea.ro

Signature of the department director Prof. dr. eng. . Francisc Ioan Hathazi

Date of endorsement in the department:

E-mail: ihathazi@uoradea.ro

22.09.2022

Date of endorsement in the department:

Signature of the department director Prof. dr. eng. Nistor Daniel Trip

E-mail: dtrip@uoradea.ro

22.09.2022

Date of endorsement in the Faculty Board:

23.09.2022

Signature of the Dean

Prof. dr. eng.habil. IoanMirceaGordan

E-mail: mgordan@uoradea.ro

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electrical systems / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			DE	SIGN	OF ELECTRICAL	SYST	EMS	
2.2 Holder of the subject			Popa Monica					
2.3 Holder of the academic seminar/laboratory/project			Pop	oa Mo	nica			
2.4 Year of study	7 1 3		er	VII	2.6 Type of the evaluation	Ex	2.7 Subject regime	О

⁽I) Imposed; (O) Optional;

3. Total estimated time (hours of didactic activities per semester)

5. Total estimated time (nours of didacti	e activition	es per semester)			
3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 academic	1
				project	
3.4 Total of hours from the curriculum	42	of which: 3.5 course	28	3.6 academic	14
				project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					2
Supplementary documentation using the library, on field-related electronic platforms and in field-					2
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					2
Tutorials			2		
Examinations				2	
Other activities.					

3.7 Total of hours for	10
individual study	
3.9 Total of hours per	52
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

4. 11c-requisites (where applicable)					
4.1 related to the	Electrical installations, Electrical equipments				
curriculum					
4.2 related to skills	Computer operation				

5.1. for the development of	on-site
the course	
5.2. for the development of	on-site
the academic project	Computers and software packages for design of electrical installations

6. Spe	cific skills acquired
	C4 Design of electrical systems and their components
	C4.3 Applying of design methods in representative electrical systems
	C6 Diagnosis, troubleshooting and maintenance of electrical systems and components
l skills	C6.4 Evaluation el electical systems quality
Professional skills	C6.5 Elaboration and testing of an analysis program for a specific electrical systems

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	Design of electrical installations
7.2 Specific objectives	 Explanation and interpretation of software packages for design and optimization of representatives electrical sysstems Interpretation of results obtained with CAD software packages

8. Contents *

8.1 Course	Teaching methods	No. of hours/ Observations
Design stages. The architecture of low voltage systems.	notes on blackboard, Power Point presentation	2
Computation methods in low voltage electrical installation	notes on blackboard, Power Point presentation	2
CAD of lighting systems. DIALux software	notes on blackboard, Power Point presentation	2
CAD of low voltage installations. Ecodial software	notes on blackboard, Power Point presentation	2
Ladder language	notes on blackboard, Power Point presentation	2
Ladder programming	notes on blackboard, Power Point presentation	2
Implementation of intelligent relays	notes on blackboard, Power Point presentation	2
Computation of shortcircuit currents	notes on blackboard, Power Point	2

	presentation	
Exemplification of shortcircuit currents.	notes on blackboard,	2
	Power Point	
	presentation	
The overcurrent protection Thermal and electrodinamic	notes on blackboard,	2
stability.	Power Point	
	presentation	
CAD for conductors dimensioning Third harmonic	notes on blackboard,	2
	Power Point	
	presentation	
Comutation equipments – protection characteristics,	notes on blackboard,	2
Protection selectivity.	Power Point	
	presentation	
Electrical shock protection – computation methods in TT,	notes on blackboard,	2
TN, IT earthing systems	Power Point	
	presentation	
Electrical efficiency in low voltage distribution systems	notes on blackboard,	2
	Power Point	
	presentation	

- 1. Monica Popa Note proiect, http://webhost.uoradea.ro/mpopa/
- 2. Colectii de STAS si Normative SR EN 60364, NP/I7/2011 ...
- 3. Ismail Kasicki Short Circuit in Power Systems , Wiley VCH Verlag GmbH, Weinheim, Germany 2002
- 4. Ghidul pentru instalatii electrice 2018 editat de Schneider Electric
- 5. ECODIAL User's Manual
- 6. DIALUX User's Manual
- 7. CADDY ELECTRICAL User's Manual
- 8. Diagrame Ladder Documentatie firme producatoare AP
- 9. I7-2011

8.2 Project	Teaching methods	No. of hours/
•		Observations
Project tasks. Elaboration steps	assisting the students in	2
	solving pplications on	
	computer	
Establishing of distribution network. The layout of	assisting the students in	2
electrical installation	solving pplications on	
	computer	
Interior lighting design – DIALux	assisting the students in	2
	solving pplications on	
	computer	
Low voltage installation design - Ecodial software	assisting the students in	2
	solving pplications on	
	computer	
Interpreting results in Ecodial.	assisting the students in	2
	solving pplications on	
	computer	
Intelligent relays. Ladder diagram	assisting the students in	2
	solving pplications on	
	computer	
Simulation of operation	assisting the students in	2
	solving pplications on	
	computer	

Bibliography

1. Ghidul pentru instalatii electrice 2018 – editat de Schneider Electric

- 2. ECODIAL User's Manual
- 3. DIALUX User's Manual
- 4. CADDY ELECTRICAL User's Manual

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In
order to provide a better accommodation to the labour market requirements, there have been organized
meetings both with representatives of the socio-economic environment and with academic staff with similar
professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
1			final mark
10.4 Course	Ability to solve a CAD	Oral examination,	60%
	application	Application on computer	
10.5 Project	Solving the project tasks	Testing the project.	40%
		Results inerpretation	
10.6 Minimum performa	nce standard:		
Passing the subject - grad	$le \ge 5$.		

Completion date: Signature of subject holder Signature of academic laboratory holder

29.08.2022 Assoc. Prof. Monica Popa Assoc. Prof. Monica Popa

E-mail: mpopa@uoradea.ro

Date of endorsement in the department: Signature of Department Head

01.09.2022 Prof. Francisc – Ioan Hathazi

E-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board: Signature of Dean

23.09.2022 Prof. Mircea Gordan

 $E\text{-mail:}\ \underline{mgordan@uoradea.ro}$

DISCIPLINE SHEET

1. Facts about the program

1.1 Highereducation institution	UNIVERSITY OF ORADEA	
1.2 Faculty / Department	FACULTY OF ELECTRICAL ENGINE	ERING
	ANDINFORMATION TECHNOLOGY	
1.3 Chair	ELECTRICAL ENGINEERING	
1.4 Field of study	ELECTROMECHANICS	
1.5 Cycle of studies	LICENŢĂ	
1.6 Study program/qualification	ELECTROMECHANICAL ORADEA	•

2. Discipline data

2.1 Name of the disc	cipline	e	OP	PPERATION AND MAINTENANCE OF ELECTROMECHANICAL				
			SY	SYSTEMS				
2.2 The holder of the course Şef lucrări.dr.ing. Gal Te o				ari.dr.ing. Gal Teofil	Ovidi	u		
activities								
2.3 Holder of laboratory/project			Şef	Şef lucrări.dr.ing. Gal Teofil Ovidiu				
activities								
2.4 Year of study	IV	2.5 Semeste	er	7	2.6 Type of	VP	2.7 Discipline regime	Ds
					assessment			

3. Estimated total time (hours per semester of teaching activities)

3.1 Număr de ore pe s ă pt ă ă r o ă ăă	42	of which: 3.2 course	2	3.3 laboratory/project	1
3.4 Total hours of the learning plan	42	of which: 3.5 course	28	3.6 laboratory/project	14
Distribution ofthetime fund for hours					62
Studyby textbook, course support, bibliography andnotes					20
Additional documentation in the library, on specialized electronic platforms and in the field					10
Preparation of seminars/laboratories, theme	s, pape	ers, portfolios and es	says		15
Tutoriat				7	
Examinecountries				10	
Other activitiesi					

3.7 Total individual study	62
hours	
3.9 Total hours per semester	104
3.10 The number of creditis	4

4. Preconditions (where applicable)

4.1 curriculum	Knowledge of electrical engineering, electric sources, mathematics and physics
4.2 of	
competitionțe	

5.Conditions (where applicable)

TTO GENERAL (WILLIAM TO THE PERSON	/				
5.1. course development	- "The course can be held face to face or online"				
	- Attendance at least 50% of the courses				
5.2. of laboratory	- "The seminar/laboratory/project can be held face-to-face or online"				
/project development	- Mandatory presence at all laboratory hours;				
	- The students come with the laboratory works reviewed				
	- A maximum of 2 papers can be recovered during the semester (30%);				
	- The frequency at laboratory classes below 70% leads to the restoration of the				
	discipline.				

6. Specific competences acquired

Professional skills	 C.6. Carrying out the exploitation, maintenance, service, system integration activities C6.2 Identification and selection of components for operation, maintenance and integration in electromechanical systems C6.3 Commissioning, in-service testing, fault analysis and troubleshooting of electromechanical systems C6.4 Use of methods and technical means to increase the reliability of electromechanical systems
Cross- sectional	CT 1. Identifying the objectives to be achieved, the available resources, the conditions for their completion, the working stages, the working times, the deadlines for achievement and the related risks.

7. Objectives of the discipline (based on the grid of specific competences accumulated)

7.1 The general objective of the discipline	The course "Systems operation and maintenance" aims to present the electromechanical systems from the point of view of the applications in technique and is addressed to the students from the engineering departments the profile ofgeneral lectromechanics and electrotechnics.
7.2 Specific objectives	 Being a specialized discipline, its object is the presentation in a unitary framework of the methods of integration, repair, assembly, quality control, lubrication and exploitation of electromechanical systems in general. In addition to the formation of skills in the field of exploitation of electromechanical systems of their repair, as well as the functioning of the electromechanical systems, in addition to the formation of some skills in the field of exploitation of the electromechanical systems, as well as the modalities of the functioning of the electromechanical systems. The technical documentation must accompanythe installation throughout its existence, starting with the design phase, thus providing information both on the equipment and component parts and on the assembly, commissioning, operation and maintenance of thisdoor.

8. Continuturi

8.1.Curs	Teaching methods	Observații
CAP.1 Maintenance systems and repair systems.	methods	
1.1. General.		
1.2. Maintenance and repair systems.		
1.2.1. Corrective maintenance systems.		2 hours
1.1.2. Preventive maintenance systems planned.	Free exposure,	
1.1.3. Palliative maintenance and repair systems.	with the	
1.3. Content of the technical-economic analysis.	presentation of the	
	course on the video	
1.4. Causes of failure of the electromechanical equipment.	projector and on	
1.5. Technical problems of operation, maintenance and repair of	the blackboard	
electrical equipment.		2h
1.6. Heating of electrical equipment and appliances.		
1.7. Influence of short-circuit currents on electrical installations.		
1.8. Electrical contacts .		
Head. 2. Basis for keeping productive fixed funds in operation.		
2.1. Friction of electromechanical systems.		2 hours
2.2. Wear of electromechanical systems.		2 110013
]	
Head. 3. Repairs of electromechanical systems.		
3.1. Receipt for repair.		

 3.2. Disassembly for repair. 3.3. Repair of the main mechanical subassemblies of machinery, machinery and installations. 3.4. Repair of the main electrical components of machines, equipment and installations. 	Free exposure,	2 hours
 3.5. Operation of maintenance and repair of rotating electric machines. 3.6. Organization of repairs to rotating electric machines. 3.7. Practical works that can be carried out for the repairs of the 	with the presentation of the course on the video projector and on the blackboard	2h
rotating electric motors. 3.8. Tests of electric cars after repairs. 3.9. Coupling of electric motors.		2h
3.10. Repair of control elements. 3.11. Operation, maintenance and repair of starting and adjusting devices.		
 3.12. Operation, maintenance and repair of electrical mechanisms. 3.13.Operation and maintenance of electromagnetic couplings and brakes. 3.14. Operation, maintenance and repair of transformers. 3.15. Handling of ports in the repair flow. 		2h
3.15. Handling of parts in the repair flow CAP.4. Installation of electromechanical systems.	Free exposure,	
4.1.Installation after repair of mechanical and electrical components.	with the	
4.2.Mounting of the mechanisms of transmission of the rotational	presentation of the	2h
movement. 4.3.Mounting of mechanisms with translational motion.	course on the video	
	projector and on the blackboard.	
4.4.Mounting of parts that guide surfaces. 4.5.Installation of	Free exposure,	
hydraulic and pneumatic installations. 4.6.Installation of	with the	
electrical equipment.	presentation of the	2h
4.7. Reception after repairs.	course on the video	
	projector and on the blackboard.	
Head. 5. Quality control of electromechanical systems.	Free exposure,	
5.1. Quality control and dimensions of parts at repairs.	with the	
5.2. Control of installation after repair.	presentation of the	2h
5.3. Tests and tests after interventions.	course on the video	
5.4. Painting of repaired machines and equipment.	projector and on the blackboard.	
Head. 6. Operation of electromechanical systems.	Free exposure,	
6.1. Operation and maintenance of repaired machines, equipment and	with the	
installations.	presentation of the	2h
6.2. Fixing on the foundation of machines and installations.	course on the video projector and on	
	the blackboard	
	-	
Head. 7. Anointing of electromechanical systems. 7.1. Mineral oils.	Free exposure, with the	21 .
7.1. Mineral ons. 7.2. Greases of consistency.	presentation of the	2h
	course on the video	
	projector and on	
7.2 (5.17.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	the blackboard	
7.3. Solid lubricants . 7.4. Autolubrefianții.	Free exposure, with the	215
7.4. Autolubicianții. 7.5. Choice of lubricants for lubrication.	presentation of the	2h
	course on the video	
	projector and on	
7.6 Lubrication quaterns and desires	the blackboard	
7.6. Lubrication systems and devices.7.7. Determination of lubricant requirements.	Free exposure, with the	2 L
Determination of fuoricant requirements.	with the	2h

- 7.8. Oraganizarea operației de lubrefiere .

 presentation of the course on the video projector and on the blackboard
- **1. P. Andrei** "Operation and maintenance of machines, equipment and installations in the mechanical workshop, Bucharest 1972.
- **2.** C. Cruceru, T Maghiar, A Lezeu, V. Stanilă. "Technology of repair and maintenance of electromechanical equipment", Didactic and Pedagogical Publishing House, Bucharest 1982
- **3. C. Cruceru** "Technology of maintenance and repair of equipment, machinery and industrial installations", Volume III, University Publishing House since 1982.Galati
- **4. D., Simulescu**, **M. Huhulescu**, **V. Caisin**, **Călin I.**" Low voltage devices . Assembly, maintenance and exploitation", Technical Publishing House Bucharest.
- 5. , B.H., 1978Jennings "The Thermal Environment: Conditioning and Control". Harper & Row, .New York
- 6. Voicu, V., 1999 "Ventilation and air conditioning installations". Technical Publishing House, Bucharest.
- 7., R. T., Neri, L., Anderson Reliability-Centered Maintenance, Elsevier Science Publishing, Ltd., London, England, 1990.
- **8. Blanchard, B. S., Verma, D., Peterson, E., Maintainability :** A KEY to Effective Serviceability and Maintenance Management, John Wiley & Sons, Inc., New York, 1994.
- 9. Birolini, A., Quality and Reliability of Technical Systems, Springer Verlag, Berlin, 1994.
- 10. Idhammar, J. Preventive Maintenance, Essential Care and Condition Monitoring Book, IDCON Inc. 1999.
- 11. Vasiu, T., Vasiu, Gh., Lemle, D., L., Reliability and diagnosis of electromechanical systems, Part I and II, Lito U.P.T. Timişoara, 1998.
- 12. Vasiu, T., Vasiu, Gh., Maintenance, Lito. U.P.T., Timişoara, 1998.
- 13. Vasiu, T., Reliability of electromechanical systems, Bibliofor Publishing House, Deva, 2000.
- **14. Budiul-Berghian A., Vasiu, T.,** Reliability and maintainability of industrial entities, Infomin Publishing House, Deva, 2008

8.2. Laboratory	Teaching methods	Observații
1. Norms of work safety technique for electromechanical equipments. Technical problems of operation, maintenance, and repair of electrical equipment.	Students receive the papers for the laboratory	2 hours
2. Operation, maintenance and repair of rotating electric machines.	at least a week in advance, study them, record them and give a test from the theoretical	2 hours
3. Getting the exploitation of the bent sheet metal press.	side at the beginning of the laboratory.	2 hours
4. Operation and maintenance of the pump in the installations.	Then, the students carry out the practical part of	2 hours
5. Notions of exploitation andmaintenance of the guillotine type scissors.	the work under the guidance of the teacher.	2 hours
6. Analysis and verification of geometric accuracy of machine tools.	Free presentation on how to make the montages and check them after the students have made the editing.	2 hours
7. Measurement of working accuracy at MUCN by executing a nose type sample piece.	have made the cutting.	

9. Corroboration of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

• The content of the discipline is found in the curriculum of the specialization of lectromecaithat from other university centers in Romania that have accredited a state of specialization, so knowing the basic notions of Exploitation and Maintenance of Electromechanical Systems is a stringent requirement of employers in the field (IAMT, Stimin Industry, Tecor Industry, Transilvania General Import Export with the platforms from Sudrigiu, Rieni and Ştei, Celestica, Comau, GMAB etc.) in the area of Oradea city and in the area of Oradea Industrial Park as well as in Bihor County.

10. Evaluation

Activity Type	10.1 Assessment criteria	10.2 Assessment	10.3 Share of final grade
		methods	

10.4 Course	The examination is done scris and orally. Exam tickets will contain at least 3 theory topics Written Note 5. 1pt ex officio - attendance at the course 4pt 2 subjects of medium level Note 7. Full Note 5 and extra 2pt applications from laboratories Orally. Note 10 Full Note 7 and extra 3pt 1 subject of difficult level	"The assessment can be done face-to-face or online" Examination scris Students each receive for resolution a form with questions with 3 variants of answer and applications (a total of 10 points you). Grille-type variant.	80 %
10.5 Laborator	- For note 5, he must know how to measure a current, a voltage and read a simple electrical diagram, as well as to adjust his meter on the respective fields. - Notes6 (six) and 7 (seven) increase the complexity of the electrical diagrams of the equipment on which they have not worked. - For the notes 8(eight), 9(nine) and 10(ten) in addition to the above, they must be able to discover a defect or a phenomenon of wear occurring in an electromechanical e equipment, to be able to find out the short circuit current on different circuits, as well as to be able to determine the value of a current on a portion of the circuit without knowing the voltage and without measuring it directly.	"The assessment can be done face-to-face or online" Test + practical application The students receive a theory test consisting of 5 questions from the theoretical part ofthe papers that are quoted with two pointse, solving each of the questions, after which if they have obtained at least the grade 5 (five), they can continue with the evaluation on the practical applications. This results in an average forlaboratory activity that will have a weighting in the final grade of the exam	20%
10.6 Project			

10.7 Minimum performance standard

Course:

- Knowledge of the constructive parts and of the principle of operation of various electr omechanical equipments.
 - The ability to identify a certain type of defect or wear occurred in an electromechanical equipment.
 - Participation in at least half of the courses.

Laboratory:

- The ability to design and read an electrical diagram.
- The ability to perform the troubleshooting of a defect occurring in an electromechanical equipment.
- Participation in all laboratory work.

Date of completion: Signature of the course holder: Signature of the laboratory holder

29.0 8.202 2 Lecturer dr.ing. Teofil Ovidiu Gal Head of works dr.ing. Ovidiu Gal Theophilus

Email: tgal@uoradea.ro

$\frac{\textbf{Date of approval in the Faculty Council:}}{23.09.2022}$

<u>Signature of Dean</u> Prof.univ.dr. habil. Mircea Ioan nGordan

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the su	bject		Electrical drives II					
2.2 Holder of the subject			Pro	Prof. PhD eng. Helga Silaghi				
2.3 Holder of the academic			Le	Lect. PhD eng. Claudiu Costea/ Lect. PhD eng. Claudiu Costea				
laboratory/project								
2.4 Year of study	IV	2.5 Semeste	er 7 2.6 Type of the Ex 2.7 Subject regime			DD		
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	1/1
		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	14/14
		course		laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					20
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					9
Preparing academic seminaries/laborato	ries/ th	nemes/ reports/ por	rtfolio	s and essays	10
Tutorials					
Examinations					9
Other activities.					

3.7 Total of hours for	48
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

wite requisites (where approacts)	
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 4 works can be recovered during the semester (30%);

		The frequency at laboratory hours below 70% leads to the restoration of he discipline						
6. Spec	6. Specific skills acquired							
Professional skills	mechanical pher equipment and e	oplication of knowledge on energy conversion, electromagnetic and nomena specific to static, electromechanical converters, electrical electromechanical drives						
Transversal skills	to complete then TC2. Identificat	ion of the objectives to be achieved, available resources, conditions n, working stages, working times, associated deadlines and risks ion of the roles and responsibilities in a multidisciplinary team and ip and effective working techniques in the team						

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)						
7.1 The general objective of the subject	• The discipline has as objective the familiarization of the students with the field of special electrical drives. It provides theoretical and practical knowledge on research, design and use of special electric drives with asynchronous and synchronous servomotors, stepper motors, linear motors, piezoelectric motors.					
7.2 Specific objectives	 The course aims to present the theoretical elements of special electric drives with asynchronous and synchronous servomotors, stepper motors, linear motors, piezoelectric motors. The laboratory familiarizes students with practical aspects of the operation of the electric drive system, the control methods of electrical actions with DC and AC machines, including modern control methods with programmed logic and computer control. The project provides the necessary knowledge to the students to be able to design an electric drive in the field of lifting and transport equipment. 					

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Advanced electric drives with asynchronous servomotors	Free exposure, with the presentation of the course with video projector, on the board or online	10h
2. Advanced electric drives with synchronous servomotors	Free exposure, with the presentation of the course with video projector, on the board or online	8h
3. Advanced electric drives with stepper motors	Free exposure, with the presentation of the course with video projector, on the board or online	5h
4. Advanced electric drives with linear motors	Free exposure, with the presentation of the course with video projector, on the board or online	3h

5. Advanced electric drives with piezoelectric motors	Free exposure, with the presentation of the course with video projector, on the board or online	2h
--	---	----

Bibliography

- 1. SILAGHI H., SPOIALĂ V., SILAGHI M. Acționări electrice, Editura Mediamira, Oradea, 2009
- 2. SILAGHI, H., SPOIALĂ, VIORICA, Acționări electrice-probleme fundamentale și noțiuni de proiectare, Ed. Universității din Oradea, 2002
- 3. SILAGHI H., SILAGHI M. Sisteme de acționări electrice cu mașini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIALĂ D., SPOIALĂ VIORICA, Mașini electrice și sisteme de acționări electrice, vol.II, Ed. Universității din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIALĂ, HELGA SILAGHI, Acționări electrice speciale, Editura Universității din Oradea, 2010
- 7. HELGA SILAGHI, V. SPOIALA, D.SPOIALA, A. SILAGHI *Acţionări electrice avansate*, Editura Universității din Oradea, Oradea, ISBN 978-606-10-2035-5, 157 pg., 2019

8.2 Academic laboratory	Teaching methods	No. of hours/ Observations
1. Presentation of the laboratory, of the labor protection norms and of the conventional signs specific to the field of electric drives. 2. Control of the main shaft to the machine tool GPR 45 NC. Speed selection 3. Control of advances to the GPR 45 NC machine tool 4. Control the revolver head on the GPR 45 NC machine tool 5. Microcontroller control of direct current servomotors	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part of the work under the guidance of the teacher	2h 2h 2h 2h 2h 2h
6. Microcontroller control of stepper motors7. Closing the situation at the laboratory.		2h 2h

Bibliography

- Silaghi H., SpoialĂ V., Costea C. Acționări electrice , Îndrumar de laborator, Lito Universitatea din Oradea, 2008
- 2. Viorica Spoială, Helga Silaghi, Dragoş Spoială Acţionări electrice. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Ediţie CD-ROM, 140 pag, 2014

8.3 Academic project	Teaching methods	No. of hours/ Observations				
Design of the lifting mechanism of a general purpose overhead crane	Students receive the project theme and design methodology and under the guidance of the teacher perform the project stages	14h				
Dibliography	0:1::1					

Bibliography

1. 1. Silaghi Helga, Spoială Viorica, *Proiectarea acționărilor electrice*, îndrumător de proiectare, Editura Universității din Oradea, 2009

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Electromechanics in other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	pe of activity 10.1 Evaluation criteria		10.3 Percent from the	
		The evaluation can be	final mark	

		done face-to-face or online	
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	20%
10.6 Project	Minimum required conditions for promotion (grade 6): going through the design stages, without deepening the calculations For 10: going through all the design stages, with the completion of the calculations and the electrical supply and control diagrams	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade.	20%

10.7 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

29.08.2022

Date of endorsement in the department: 01.09.2022

Date of endorsement in the Faculty Board: 23.09.2022

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject			PRODUCTION, TRANSPORTATION AND DISTRIBUTION OF				
			ELECTRICAL ENERGY				
2.2 Holder of the subject			Popa M	Ionica			
2.3 Holder of the academic			Sopron	Soproni Darie, Szoke Adrian			
seminar/laboratory/project			_				
2.4 Year of IV 2.5 Semester		VII	2.6 Type of the	Ex	2.7 Subject regime	I	
study				evaluation			

3. Total estimated time (hours of didactic activities per semester)

5. Total estimated time (notified and de		· · · · · · · · · · · · · · · · · · ·			
3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the	56	of which: 3.5	28	3.6 academic laboratory	28
curriculum		course			
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					
Tutorials					3
Examinations					
Other activities.					

3.7 Total of hours for	48
individual study	
3.9 Total of hours per	104
semester	
3.10 Number of credits	4

4. Pre-requisites (where applicable)

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.1 related to the	Electrical installations, Electrical devices
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	on-site
the course	
5.2. for the development of	on-site
the academic laboratory	at local companies in the domain of production and distribution of
	electrical energy

6. Spec	cific skills acquired
Professional skills	C3.1 Description of the operating principles of transformers, static, electromechanical converters, electrical equipment, the main sources of electromagnetic disturbances and the rules regarding electromagnetic compatibility C3.2. Explanation and interpretation of the operating regimes of static, electromechanical converters, of electrical and electromechanical equipment C3. 4. Assessing the quality and functional performance of electrical systems through specific methods C6.2. Identification and selection of components for operation, maintenance and integration in electromechanical systems
Transversal skills	

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the	Component of the electricity production, transport and distribution
subject	systems
7.2 Specific objectives	Explaining energy conversion phenomena
	Description of the principles and operating regimes of the
	component elements of the electricity transport and distribution
	systems

8. Contents *

5. Contents		
8.1 Course	Teaching methods	No. of hours/ Observations
1. Electrical systems. Electricity production. The impact on	notes on blackboard,	2
the environment	Power Point	
	presentation	
2. Power plants - general presentation. Production of	notes on blackboard,	2
electricity from renewable sources.	Power Point	
	presentation	
3. General considerations regarding the transport and	notes on blackboard,	2
distribution of electricity - requirements, classifications	Power Point	
	presentation	
4. Classification of electrical networks from the point of	notes on blackboard,	2
view of the situation of the neutral with respect to the ground	Power Point	
-	presentation	
5. Constructive elements of overhead power lines	notes on blackboard,	2
	Power Point	
	presentation	
6. Constructive elements of cable electric lines	notes on blackboard,	2
	Power Point	
	presentation	
7. The main parameters and the equivalent schemes of the	notes on blackboard,	2
elements of the electricity transport and distribution	Power Point	
installations	presentation	

8. Electrical calculation of distribution networks - structure distribution networks, connection schemes	of notes on blackboard, Power Point presentation	2
9. Electrical calculation of distribution networks in permanemate of calculation of voltage losses		2
10. The thermal regime of electric lines	notes on blackboard, Power Point presentation	2
11. Choosing the power line section	notes on blackboard, Power Point presentation	2
12. Power and energy losses in electrical networks	notes on blackboard, Power Point presentation	2
13. The quality of electricity	notes on blackboard, Power Point presentation	2
14. Energy efficiency in electrical distribution	notes on blackboard, Power Point presentation	2
Monica Popa – Note curs Ghidul pentru instalatii electrice 2018 – editat de Schneid Normative si ordine ANRE	der Electric	
8.2 Laboratory L1. Safety methods in electrical installations.		2
L2. Norms for labor protection and first aid in electricity production, transport and distribution facilities		2
L3. Testing knowledge of labor protection rules		2
L4. Technological and constructive elements of thermoelectric and hydroelectric plants		2
L5. Presentation of CET Oradea equipment - the generation part	Visit at CET Oradea	2
L6. Presentation of CET Oradea equipment – command room	Visit at CET Oradea	2
L7. Production of electricity from renewable sources - solar energy		2
L8. Production of electricity from renewable sources - hydrogen fuel cells		2
L9. Connection station presentation – description, component parts		2

L10. Connection station presentation

Visit at connection station

	in Parcul Industrial Oradea	
L11. Presentation of medium voltage cells 20kV		2
L12. Operational management by dispatch of the operation of an electric distribution station	Visit at DEER Oradea	2
L13. Technological and constructive elements of LEA and LES		2
L14. Ending the situation at the laboratory - knowledge testing		2

References

Colectii de STAS si Normative – SR EN 60364, NP/I7/2011 ... Ghidul pentru instalatii electrice 2018 – editat de Schneider Electric

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

- Knowledge about electricity generation and transportation
- Dimensioning methods according with IEC Standards

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Metode de evaluare	10.3 Pondere din nota
			finală
10.4 Course	Theoretical	Written exam	60%
10.5 Laboratory	Achievement of	Activity during	40%
·	laboratory tasks	laboratory classes	
10.6 Minimum perfor	rmance standard:		
Passing the subject -	grade ≥ 5 .		

Completion date: Signature of subject holder Signature of academic laboratory holder

29.08.2022 Assoc. Prof. Monica Popa Assoc. Prof. Monica Popa

E-mail: mpopa@uoradea.ro

Date of endorsement in the department: Signature of Department Head

01.09.2022 Prof. Francisc – Ioan Hathazi

E-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board: Signature of Dean

23.09.2022 Prof. Mircea Gordan

E-mail: mgordan@uoradea.ro

DISCIPLINE SHEET

1. Facts about the program

1.1 Highereducation institution	UNIVERSITY OF ORADEA
1.2 Faculty / Department	ELECTRICAL ENGINEERING ANDINFORMATION
	TECHNOLOGY
1.3 Chair	ELECTRICAL ENGINEERING
1.4 Field of study	ELECTRICAL ENGINEERING
1.5 Cycle of studies	LICENŢĂ
1.6 Study program/qualification	ELECTROMECHANICAL ORADEA

2. Discipline data

2.1 Name of the discipline			EI	ECTROMECHAN	ICAL SY	YSTEMS I	
2.2 The holder of the course activities			Şe	Şef lucrări.dr.ing. Gal Teofil Ovidiu			
2.3 Holder of laboratory/project			Şe	Şef lucrări.dr.ing. Gal Teofil Ovidiu			
activities							
2.4 Year of study IV 2.5 Semester			7	2.6 Type of	Ex	2.7 Discipline regime	Ds
				assessment			
(I) Imposed:	(0)	optional:		(F) Optional			

3. Estimated total time (hours per semester of teaching activities)

3. Estimateu total time (nours per semester	or teac	ming activities)			
3.1 Număr de ore pe s ă pt ă ă r o ă ăă		of which: 3.2	2	3.3 laboratory/project	1
		course			
3.4 Total hours of the learning plan	42	of which: 3.5	28	3.6 laboratory/project	14
		course			
Distribution ofthetime fund for hours				62	
Studyby textbook, course support, bibliography andnotes					20
Additional documentation in the library, on specialized electronic platforms and in the field					10
Preparation of seminars/laboratories, themes, papers, portfolios and essays					20
Tutoriat					6
Examinecountries				6	
Other activitiesi					
T T					•

3.7 Total individual study	62
hours	
3.9 Total hours per semester	104
3.10 The number of creditis	4

4. Preconditions (where applicable)

	· · · · · · · · · · · · · · · · · · ·
4.1 curriculum	Technical drawing
4.2 of	Knowledge of symbols, graphs specific to electrical diagrams
competitionțe	

5.Conditions (where applicable)

5.1. course development	- "The course can be held face to face or online"
	- Attendance at least 50% of the courses
	- Video projector, computer.
5.2. of laboratory	- "The seminar/laboratory/project can be held face-to-face or online"
/project development	- Equipment related to the laboratory class.;
	- Preparation of the report (synthesis material);
	- Performing all laboratory hours;
	- A maximum of 2 papers can be recovered during the semester (30%);
	- The frequency at laboratory classes below 70% leads to the restoration of the
	discipline.

6. Spe	cific competences acquired
Professional skills	 C3. Adequate application of knowledge on energy conversion, electromagnetic and mechanical phenomena specific to static, electromechanical converters, electrical equipment and electromechanical drives C3.4. Assessment of the quality and functional performances of electromechanical systems by specific methods C4. The use of techniques for measuring electrical and non-electrical sizes, of data acquisition systems in electromechanical systems. C5. 4. The Coyou are toon trolsystems and controlsystems are controlsystems.
Cross- sectional	

7. Objectives of the discipline (based on the grid of specific competences accumulated)

7. Objectives of the discipline (sused	. Objectives of the discipline (based on the grid of specific competences accumulated)					
7.1 The general objective of the	The course "Electromechanical systems I " aims at definire a n i n t i on o f the th					
discipline	eCo you aret controlsystemsandcontrolsystemsan					
	d controlsystemstheCoyou aretcontrolsystemsan					
	d compoents and controls y stems and controls y stem					
	s i ms it iono f the					
7.2 Specific objectives	- s i mplementer si on S is a tesstece sisteme m sa t i On O f the ru SEM					
	- i'mplem e nte ze echip ame nt e l e l ectri ce, h i draii ic e s a p newasmeasuredc e p					
	e e s truc t un u of SEM; -to measure the electrical / hydraulic / pneumatic paramenters of the SEM and to					
	interpreteze datel e le o you arenotcon t;					
	-whichwhi crelationsEM.					

8. Conținuturi

o. Conşinuturi		
8.1.Curs	Teaching	Observații
	methods	
CHAP.1. Cthe main construction of different types of SEM.	Free exposure,	
-	with the	
	presentation of	
	the course on the	2 hours
	video projector	
	and on the	
	blackboard	
CAP.2. Electromechanical systems – sources and receptors	Free exposure,	2 hours
for electromagnetic disturbances	with the	
-	presentation of	

		,
	the course on the	
	video projector	
	and on the	
	blackboard	
CAP.3. Structure of electromechanical systems. Sources and	Free exposure,	2 hours
receptors of disturbances	with the	
1	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard	
CAP.4. Block of work of SEM tipice: vehicul u s a	Free exposure,	2 hours
	with the	
n ergies t heC o you are to on t r ols y s t em s a n	presentation of	
d c o n t rols y s t e ms, the C o youaret c on t rol	the course on the	
s y s t e m s a n d c o n t r o l s y s t e m s	video projector	
	and on the	
	blackboard	
CAD 5 The sinematic and of CEM division it a	Free exposure,	2 hours
CAP.5. The cinematic pad of SEM ti pice: s i i e	with the	2 110u15
conve r ergiei b aza e e s e re genra bie, mic rosisele		
ct romeca nice, chip ame n t hee ct roc asnc	presentation of the course on the	
	video projector	
	and on the	
GAD 6 FE	blackboard	2.1
CAP.6. Transmission system of the SEM tipice:	Free exposure,	2 hours
microsisteme m e m ele c tromecanic is used to	with the	
echipamentul ectroc a tion o f the	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard	2.1
CAP.7. The adjustment, command and control block of	Free exposure,	2 hours
SEM: microsisteme m ele c tromecanice used to ech	with the	
ipamentul electroc a snic.	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard	
CAP.8. Types of disturbances occurring in SEM.	Free exposure,	2 hours
	with the	
	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard	
CAP.9. Harmonics and voltage fluctuations in SEM.	Free exposure,	2 hours
	with the	
	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard	
CAP.10. Classification and negative effects of harmonics in	Free exposure,	2 hours
SEM.	with the	
SLW.		
SLIVI.	presentation of	

	video projector	
	and on the	
	blackboard	
CAP.11. Mechanism of occurrence of disturbance in SEM.	Free exposure,	2 hours
	with the	
	presentation of	
	the course on the	
	video projector	!
	and on the	ļ
	blackboard	
CAP.12. Antiparasitic methods in SEM.	Free exposure,	2 hours
	with the	
	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard.	
Head. 13. Software used in SEM design.	Free exposure,	2 hours
	with the	
	presentation of	
	the course on the	
	video projector	
	and on the	
	blackboard.	
Head. 14. Diagnoz a t i on SEM: gener a lic a ti on o f the	Free exposure,	2 hours
diagnosis of echip a m a m a m o n trie s, mon i t ori e s t	with the	
a ti on o f the d is tan d i s ta n d i t you are e m	presentation of	
attonorme ans tan arstan art you meem	the course on the	
	video projector	
	and on the	
	blackboard	
	L	l .

Bibliography:

- 1. M. Horgos, Masini si utilaje electromecanice, Editur a Risoprint Cluj Napoca, 2007.
- 2. **C** l'awedia Marti, T'sta r'e a and i proiecta r ea s i'sfearelor e thec t rome ca nce, Atelie rl e l e liplicare a l in i tuu u i Politehnic clu j-N a poca, 1987
- 3. **Mihai Gafi t and, Spiridon Cret, Barbu Dar** b u d a **n,** Dia g i ag t heC o you are t c on t r o l s y s t e m s a n d c o n t r o l s y s t e m s elor, Edi t you are a t e r a ti on o f the Bucyou areesti on, 1989
- 4. **N. U-Ficcher,** Vibrati i e s e i e ll or meca nice. It's arandit's a pl'i e i, ed'ti aura Ca s a candr and d'e tit ie t a., 1998.

8.2. Laboratory	Teaching methods	Observații
1. TheC o you are t c on t r o ls y s t e m s a n d c o n t r o l s y s t e m s a n d c o n t r o l s y s t e m s a n d c o n t r o l s y s t e ms nci a t i on, organizara t i on o f the acti v i t i on o f the acti v i a t i on o f the activi t i on o f the borator o f the	Modelarea Case study	2h
2. Analiz a func ion c on c on a SEM.	Modelarea Case study	2h
3. Analiza comporti on O fefect a t i On O f the	Modelarea Case study	2h
4. Monitori es a pl ic a ti on o f the	Modelarea Case study	2h
5. Rezolv a r e a ti onof the problem arising in the operation of a	Modelarea	2h

SEM.	Case study	
6. T heCo you are t c on trols y stems and that theCo you are t c on trols y stems and that a tthere sult softheam and controls y stems and controls y stems and controls y stems and controls gette.	Case study	2h
7. Conclusion of the situation at the laboratory	Modelarea Case study	2h

Bibliography:

- 1. M. Horgoş, Masini si utilaje electromecanice, Editur a Risoprint Cluj Napoca, 2007.
- 2. **C** l'awedia Marti, T'sta r'e a and i proiecta r ea s i'sfearelor e thec t rome ca nce, Atelie rl e l e liplicare a l in i tuu u i Politehnic clu j-N a poca, 1987
- 3. **Mihai Gafi t and, Spiridon Cret, Barbu Dar** b u d a **n,** Dia g i ag t heC o you are t c on t r o l s y s t e m s a n d c o n t r o l s y s t e m s elor, Edi t you are a t e r a ti on o f the Bucyou areesti on, 1989
- 4. **N. U-Ficcher**, Vibrati i e s e i e ll or meca nice. It's arandit's a pl'i e i, ed'ti aura Ca s a candr and d'e tit ie t a., 19 98

9. Corroboration of the contents of the discipline with the expectations of the representatives of the epistemic community, professional associations and representative employers in the field related to the program

The content of the discipline is adapted and satisfies the requirements imposed by the labour market, being adapted cu mediul economic din egiune concretizath eCo you are tcontrolsystems and controlsystems and controlsyst

10. Evaluation

Activity Type	10.1 Assessment	10.2 Assessment	10.3 Share of final grade
	criteria	methods	
10.4 Course	Periodical check is done for a duration of 1/2/3 hours. Written: For note 5: All topics must be treated to minimum standards.	"The assessment can be done face-to-face or online" Week a – 7 – a Partial VP which is 50% of the FINAL VP	80 %
	For the note > 5 all subjects must be treated to naxime standards.	Week a – 14 – a VP – final	
10.5 Laboratory	For a grade of 5, all tests and the final test must be treated to a minimum standard. For notes > 5 final must be treated to the maximum standard.	"The assessment can be done face-to-face or online" All laboratory work must be performed in order to be able to enter the final VP. It is allowed the recovery of the maximum 2 laboratories overdue before VP – final	20%
10.6 Project			

10.7 Minimum performance standard

- Carrying out works under coordination, to solve specific problems in the field, with the correct evaluation of the volume of lechers, the available resources, the necessary time of completion and the risks in conditions of strict application of the occupational safety and health norms.
- Adequate use of the fundamental knowledge of technological methods and processes used in the machine building industry as well as in the electrotechnical industry.

Date of completion: Signature of the course holder: Signature of the laboratory holder:

29.0 8.202 Lecturer dr.ing. Teofil Ovidiu LAG Head of works dr.ing. Teofil Ovidiu LAG

Email: tgal@uoradea.ro

Date of approval in the department:

01.09.2022

<u>Signature of the Director of Department</u> Prof.univ.dr.ing.inf. Hathazi Francis – John

Date of approval in the Faculty Council:

23.09.2022

<u>Signature of Dean</u> Prof.univ.dr. habil. Mircea Ioan Gordan

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the subject Electromechanical syste			ms II			
2.2 Holder of the subject	I	Lecturer phd.eng. ARION MIRCEA NICOLAE				
2.3 Holder of the academic Lecturer phd.eng. ARION MIRCEA NICOLAE						
seminar/laboratory/projec	et					
2.4 Year of study 4	2.5	8 2.6 Type of the Ex – Exam 2.7 Subject Specialized				
	Semester		evaluation	Continuous	regime	Discipline
				Assessment		

3. Total estimated time (hours of didactic activities per semester)

`					
3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	-/1/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic	-/14/-
	course seminar/laboratory/proj				
Distribution of time					36
					hours
Study using the manual, course support, bibliography and handwritten notes					12
Supplementary documentation using the library, on field-related electronic platforms and in field-				7	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				7	
Tutorials				4	
Examinations				6	
Other activities.					

0 11101 11011		
3.7 Total of hours for		
individual study		
3.9 Total of hours per		
semester		
3.10 Number of credits	3	

4. Pre-requisites (where applicable)

4.1 related to the curriculum	(Conditions) – Minimum knowledge on fundamental notions of thermodynamics, electromagnetic field theory, electric machines, constituent elements of electrical
	circuits and how they work.
4.2 related to skills	-Knowledge of the graphics symbols, specific to electrical diagrams

5. Conditions (where applicable)

5.1. for	r the development of	The course can be presented online or face to face, in the amphitheater				
the cou	ırse	with modern techniques available: Video projector, Screen, Blackboard,				
		Oral speech				
5.2.for	the development of	- The laboratory can be conducted face to face or online				
the aca	ademic	- The equipment related to the laboratory class;				
semina	ary/laboratory/project	- Preparation of the report (synthesis material);				
		- Carrying out all laboratory works;				
		- The practical applications will be performed by using the experimental				
		equipments existing in the laboratory (Experimental stands, electrical				
		equipment, high-performance and current measuring devices, modeling software, etc.).				
		- Attendance is mandatory at all laboratories				
		- A maximum of two laboratory works can be recovered (30%);				
		- The participation at laboratory hours below 70% leads to the restoration				
		of the discipline.				
6. Speci	ific skills acquired					
	C6. Diagnosis, troublesho	oting and maintenance of electrical systems and components				
nal						
Professional skills						
fess						
Profes skills						
H S	071 11 25 2 11					
		objectives to be achieved, available resources, conditions to complete them, working				
Transversal skills	stages, working times, associated deadlines and risks					
sve						
Trans skills						
Tr sk						

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	 The course "Electromechanical Systems II" aims to acquire the basic knowledge of air conditioning systems, control the processes that occur during the operation of heating, ventilation, filtration and air conditioning systems, but last but not least and the influence of these systems on climatic parameters, the calculation of the heat demand and the fundamental electrical parameters, being addressed to students in the field of electrical engineering, electromechanical specialization. The discipline also tries to form the following attitudinal competencies: the manifestation of a positive and respectable attitude towards the scientific field, the optimal and creative capitalization of one's own potential in scientific activities, involvement in scientific innovation, participation in one's own development.
7.2 Specific objectives	 The objectives of the discipline are to know and understand the basic functional relationships of equipment for ventilation and air conditioning systems used in industry, regardless of the energy source used and their effects on the environment, by explaining and interpreting the behavior of systems, performing calculations and determinations, experimental verification of the basic relations for physical systems encountered in industrial practice, simulation of operation with specialized software. The activity in the laboratory is focused on applications specific to the chapters taught in the course and aims at the experimental verification of the basic relations for the physical systems encountered. Carrying out laboratory work offers, in addition to the formation of skills in the electrical field, the use of physical and numerical modeling, sizing of assemblies, correct use of measuring equipment, evaluation of errors in experimental determinations, functional verification, establishing and making necessary adjustments to achieve parameters. design, respectively the performance of the maintenance works of the installations

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations

 Fundamentals of the use of industrial ventilation and air conditioning systems Industrial ventilation systems Fundamentals. Microclimate of industrial premises Natural ventilation of industrial premises. Forced local ventilation of industrial premises. Breakdown ventilation systems for industrial premises. 	Free speaking, presentation of the course by using video projector and blackboard Free speaking, presentation of the course by using video projector and blackboard	10
3. Air filtration in industrial premises.4. Industrial air conditioning	Free speaking, presentation of the course by using video projector and blackboard Free speaking,	8
Physiological climatic bases of air-conditioned premises The physiological balance of human beings in artificial environments. Climatic calculation parameters. Industrial ventilation and air conditioning equipment Refrigeration systems and installations for air conditioning. Constructive solutions adapted to different working conditions	presentation of the course by using video projector and blackboard	
5. Installation and operation of industrial air conditioning systems	Free speaking, presentation of the course by using video projector and blackboard	2
6. Maintenance and repair of industrial air conditioning systems Bibliography	Free speaking, presentation of the course by using video projector and blackboard	2

Bibliography

- 1. M. Arion Sisteme electromecanice II Note de curs, 2020
- 2. Andrei Damian, Andreea Vartires *Instalatii de ventilare si climatizare* partea I, Editura Matrixrom, Bucuresti, 2013.
- 3. Gheorghe Duță, Iolanda Colda, Puiu Stoienescu Instalații de ventilare și climatizare. Editura ARTECNO, București, 2002
- 4. Nagy Stefan Utilaj electromecanic industrial Editura Universitatii din Oradea, 2013
- 5. Samuel C. Monger HVAC Systems: Operation, Maintenance and Optimization
- 6. Documentație tehnică instalații de filtrare si climatizare
- 7. ASHRAE handbook

7. ASTIKAL HallOOOK		
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory, labor protection measures,	Free speaking.	2
organization of the laboratory activity.		
2. Measuring devices and methods used in ventilation and air-	Free speaking,	2
conditioning installations	use of an	

	experimental stand and existing measuring devices in the laboratory	
3. Experimental determination of pressure variation in air ducts	Free speaking, use of an experimental stand and existing measuring devices in the laboratory	2
4. Determining the structure of an isothermal free jet	Free speaking, use of an experimental stand and existing measuring devices in the laboratory	2
5. Air conditioning system with variable refrigerant volume	Free speaking, use of an experimental stand and existing measuring devices in the laboratory	2
6. Complex air treatment in an air conditioning system (heating-humidification)	Free speaking, use of an experimental stand and existing measuring devices in the laboratory	2
7. Evaluation test. Completion of the laboratory situation / Recovery of laboratory works	Free speaking, use of an experimental stand and existing measuring devices in the laboratory	2

Bibliography

- 1 1. M. Arion Sisteme de ventilație și climatizare Lucrari de laborator , 2020
- 2 Andrei Damian, Andreea Vartires Instalatii de ventilare si climatizare partea I, Editura Matrixrom, Bucuresti, 2013.
- 3 Gheorghe Duță, Iolanda Colda, Puiu Stoienescu Instalații de ventilare și climatizare. Editura ARTECNO, București, 2002
- 4 Nagy Stefan Utilaj electromecanic industrial, Editura Universitatii din Oradea, 2013
- 5 Samuel C. Monger HVAC Systems: Operation, Maintenance and Optimization
- 6 Documentație tehnică instalații de filtrare si climatizare
- 7 ASHRAE handbook

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	 For the minimum promotion grade - 5 it is necessary to know the fundamental notions required in the topics without presenting detailed details on their content. For the maximum grade -10, a thorough knowledge of the treated subjects is required 	Oral examination	60,00%
10.6 Laboratory			40.00.0/
Ability to apply in practice, in different contexts, the knowledge learned; Ability to analyze, personal interpretation, originality, creativity;		Oral examination	40,00 %

10.8 Minimum performance standard:

- Carrying out the works under the coordination of a teacher, in order to solve specific problems of maintenance and diagnosis of ventilation and air conditioning systems by correctly evaluating the workload, available resources, the necessary time of completion and risks, under the conditions of application of the occupational safety and health norms.

Completion date:

29.08.2022

Date of endorsement in the department:

01.09.2022

Date of endorsement in the Faculty

Board:

23.09.2022

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Data related to the subject

2.1 Name of the sub	2.1 Name of the subject			Nonconventional equipments and technologies				
2.2 Holder of the su	2.2 Holder of the subject Assoc. prof. Pasca Sorin							
	2.3 Holder of the academic Assoc. prof. Pasca Sorin seminar/laboratory/project							
2.4 Year of study	4	2.5 Semeste	er	7	2.6 Type of	Vp - Continuous	2.7 Subject	Specialized
					the evaluation	Assessment	regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

	ĺ			
3.2 course seminar/laboratory/project				
3.4 Total of hours from the curriculum 42 of which: 28 3.6 academic -	-/14/-			
3.5 course seminar/laboratory/project				
Distribution of time 1	hours			
Study using the manual, course support, bibliography and handwritten notes				
Supplementary documentation using the library, on field-related electronic platforms and in field-				
related places				
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				
Tutorials				
Examinations				
Other activities.				

3.7 Total of hours for individual study	62
3.9 Total of hours per semester	104
3.10 Number of credits	4

4. Pre-requisites (where applicable)

1 \ 11	7
4.1 related to the curriculum	Previous subjects: Physics, Technological methods and procedures,
	Electromagnetic field theory, Theory of electrical circuits, Electrotechnic
	materials
4.2 related to skills	-

5. Conditions (where applicable)

5.1. for the development of the course	Teaching activities will normally take place face to face. If special measures will be imposed in the epidemiological context generated by the COVID-19 pandemic, the courses can be held online.
5.2.for the development of the academic seminary/laboratory/project	CO v 1D-17 pandemic, the courses can be field offinite.

6. Spec	6. Specific skills acquired				
	•	C1.2. Explaining and interpreting the phenomena presented at the domain disciplines and at the			
Professional skills		specialized disciplines, using the basic knowledge of mathematics, physics, chemistry			
100	•	C3.2. Explanation and interpretation of the operating modes of static, electromechanical converters,			
ess Kil		electrical and electromechanical equipment			
ofe sl	•	C3.3. Identification of electromechanical systems based on their structure; mathematical modeling,			
Pr		as well as their kinematic and dynamic description			
	•	C3.4. Assessing the quality and functional performance of electrical systems by specific methods			
al					
Transversal skills					
nsver skills					
ran					
Ξ					

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general	• the study of some of the most modern electrotechnologies and of the specific
objective of the subject	electrical equipment
7.2 Specific objectives	 knowledge of the basics of the physical phenomena involved in the studied electrotechnological processes
	 knowledge of the general structure of the electrical equipment specific to the studied technologies
	 understanding the functioning of complex installations and equipments from the electrical technologies domain
	 skills regarding the comparative qualitative analysis of some technological processes
	 skills regarding the calculus of sizing of some subassemblies from the studied installations
	• formation of skills regarding the design and realization of experimental setup for the study of modern technological processes

8. Contents*

8.1 Course		Teaching	No. of hours/
		methods	Observations
1.	Introductory course: Electrotechnologies / Special electrical	For on-site	2
	technologies / Unconventional electrical technologies, history,	activity:	
	examples, features, advantages and disadvantages compared to	Presentation	
	"classical" processes	with video-	
2.	Infrared (IR) heating and drying equipment. IR - characteristics,	projector and	2
	specific laws, IR sources, types of furnaces / drying installations with	additional	
	IR (tunnel ovens), sizing principles	explanations	
3.	Electrotechnologies based on ultrasounds (UUS) applications in	on the	2
	industry: UUS characteristics, phenomena that occur at UUS	blackboard	
	propagation through different media, UUS production.		
	Magnetostrictive and piezoelectric transducers. The general setup of		
	an electroacoustic system	For the on-line	
4.	Electrotechnologies based on ultrasounds (UUS) applications in	activity: The	2
	industry: Applications (dimensional processing, welding and	university's	
	soldering plastics and metals, cleaning - degreasing in ultrasonically	e-learning	
	activated baths)	platform	
5.	Equipment for electrical metalworking: EDM (Electric Discharge	and / or	2
	Machine) processing. (Principle of processing, process analysis, EDM	Microsoft	
	with massive electrode. Specific power sources)	Teams, in	
6.	Equipment for electrical metalworking: EDM machines with filiform	video-audio	2
	electrode. Electrical contact processing equipment. Electrochemical	conferencing	
	processing equipment. Anode-mechanical processing equipment	mode, are used	
7.	Equipment for electrical metalworking. High speed forming		2
	equipment. Electromagnetic processing / electromagnetic forming		

8. Equipment for electrical metalworking. High speed forming	For on-site	2
equipment. Electrohydraulic processing / electrohydraulic forming	activity:	
9. Unconventional processes for coating metal surfaces; specific	Presentation	2
electrical equipment. Electrophoretic varnishing (chemical bonds,	with video-	
process analysis, power supply sources, constant voltage or constant	projector and	
current process, energy balance	additional	
10. Unconventional processes for coating metal surfaces; specific	explanations	2
electrical equipment: Electrostatic painting (electrostatics basics, types	on the	
of electrostatic coatings, electrostatic painting installations, power	blackboard	
supply (HV), adv./disadv.)		
11. Electrotechnologies using thermal plasma and specific equipment:	For the on-line	2
Thermodynamic characteristics of plasma. Plasma generation. Types	activity: The	
of plasmatrons (with electric arc, induction, electronic), construction	university's	
and power supply variants	e-learning	
12. Industrial applications of low temperature thermal plasma; plasma	platform	2
furnaces, remelting for refining, separation of useful components,	and / or	
obtaining metals with high melting point, cutting metals	Microsoft	
13. Electrical equipment for unconventional welding and soldering	Teams, in	2
processes. Classification of unconventional welding processes. Sheet	video-audio	
metal welding with stored energy	conferencing	
14. Electron beam equipment: basics, features, equipment, applications	mode, are used	2

Bibliography (selection)

- 1. I. Şora, N. Golovanov et al *Electrothermia and Electrotechnologies* (in Romanian), Vol. 2, *Electrotechnologies*, Technical Publishing House, Bucharest, 1999
- 2. Fl.T. Tănăsescu, C. Ifrim Electrotechnologies (in Romanian), Politehnica Press, Bucharest, 1990
- 3. I. Şora ş.a.— *Installations for electrotechnologies* (in Romanian), laboratory works, Politehnica University Timişoara, 1994
- 4. S. Paşca *Nonconventional electrical technologies and equipment* (in Romanian), Vol. I, University of Oradea Publishing House, 2004
- 5. S. Paşca Nonconventional equipment and technologies (in Romanian) lecture notes, (electronic)
- 6. S. Pasca, V. Fireteanu *Finite Element Analysis of Successive Induction Heating and Magnetoforming of Thin Magnetic Steel Sheets*, 14th International Symposium on Numerical Field Calculation in Electrical Engineering IGTE 2010, Graz, Austria, Proceedings, pp. 356-361
- 7. S. Pasca, T. Tudorache, M. Tomse Finite Element Analysis of Coupled Magneto-Structural and Magneto-Thermal Phenomena in Magnetoforming Processes, 6th International Conference on Electromagnetic Processing of Materials EPM 2009, Dresden, Germany, Proceedings, pp. 735-738
- 8. S. Pasca, T. Vesselenyi, V. Fireteanu, T. Tudorache, P. Mudura, M. Tomse, M. Popa *Electromagnetic Forming an Efficient Technology for Metallic Sheet Processing*, Przeglad Elektrotechniczny (Electrotechnical Review), 11/2008, 84, pp. 197-202
- 9. V. Fireteanu, T. Tudorache, M. Popa, and S. Pasca Finite Element Analysis of Aluminum Billet Heating by Rotation in DC Magnetic Fields, XXIV UIE International Congress, Krakow, Poland, 2008, Proceedings
- 10. S. Pasca, T. Vesselenyi, V. Fireteanu *Transient Phenomena in Electromagnetic Forming Processes*, International Scientific Colloquium "Modeling for Electromagnetic Processing" MEP 2008, Hannover, Germany, Proceedings, pp. 315-320.

8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Technical norms of work safety specific to electrotechnologies.		2
Presentation of laboratory works		
2. Study of an infrared heating / drying installation		2
3. Modern equipments which uses ultrasound applications. Determining		2
the parameters of electroacoustic transducers that operate based on the		
piezoelectric effect		
4. Modern equipments which uses ultrasound applications. Study of an		2
equipment for cleaning / degreasing parts and components in		
ultrasonically activated solvent baths / {Determining the parameters of		

electroacoustic transducers that operate based on the magnetostrictive	
effect}	
5. Study of the Electric Discharge Machine with massive electrode and of	2
the pulse generators for EDM	
6. Laboratory equipment for the study of electromagnetic forming	2
process of thin metal sheets / {Numerical modeling of the	
electromagnetic forming process of thin metal sheets}	
7. Nonconventional processes for welding metal half-finished products.	2
Study of a classic spot welding equipment (with transformer) and,	
comparatively, of a spot welding equipment with stored energy	

Bibliography (selection)

- 1. I. Şora, N. Golovanov et al *Electrothermia and Electrotechnologies* (in Romanian), Vol. 2, Electrotechnologies, Technical Publishing House, Bucharest, 1999
- 2. Fl.T. Tănăsescu, C. Ifrim Electrotechnologies (in Romanian), Politehnica Press, Bucharest, 1990
- 3. I. Şora ş.a.— *Installations for electrotechnologies* (in Romanian), laboratory works, Politehnica University Timişoara, 1994
- 4. S. Paşca *Nonconventional electrical technologies and equipment* (in Romanian), Vol. I, University of Oradea Publishing House, 2004
- 5. S. Paṣca *Nonconventional equipments and technologies* (in Romanian) laboratory works, (electronic)

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of	10.1 Evaluation	10.2 Evaluation methods	10.3 Percent from
activity	criteria		the final mark
10.4 Course	- the final grade	Continuous assessment Vp.	75 %
	obtained at the	- The students will support 2 written works Vp1 and	
	assessment	Vp2, in the weeks 7 and 14, each covering 1/2 of	
	works, Vp	the semester subject;	
		- If special measures will be imposed in the	
		epidemiological context generated by the COVID-	
		19 pandemic, the assessment can beheld online,	
		using the e-learning platform of the University of	
		Oradea or the Microsoft Teams platform, in	
		compliance with the requirements imposed by the	
		Methodology for conducting didactic activities	
		during the academic year.	
		-final grade: $Vp = (Vp1 + Vp2) / 2$	
		- requirements: $Vp1 \ge 5$, $Vp2 \ge 5$	
10.5	- the final grade	- the students will take a test (set of questions) on	25 %
Laboratory	for laboratory activity, L	the laboratory works, after which they will obtain the grade TL	
	activity, L	- another DL grade will be given on the personal	
		laboratory file (complete file, experimental data	
		processing, themes and applications solved	
		correctly)	
		- final grade for the laboratory activity results:	
		L = (TL + DL) / 2	
		- requirements: $TL \ge 5$, $DL \ge 5$	
10.8 Minimur	n performance stan	dard:	

Passing the exam (obtaining the credits) involves: $Vp1 \ge 5$, $Vp2 \ge 5$ and $L \ge 5$

- The final grade is calculated as follows: $N = 0.75 \cdot Vp + 0.25 \cdot L$

Completion date: Signature of the course holder Signature of the laboratory holder

29.08.2022 Assoc. prof. Sorin Paşca Assoc. prof. Sorin Paşca

E-mail: spasca@uoradea.ro

Date of endorsement in the department: Signature of the head of department

01.09.2022 Prof. habil. Francisc-Ioan Hathazi

E-mail: francisc.hathazi@gmail.com

Date of endorsement in the Faculty Board: Signature of the dean

23.09.2022 Prof. habil. Ioan-Mircea Gordan

E-mail: mgordan@uoradea.ro

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Electrical Engineering
1.4 Field of study	Electrical engineering
1.5 Study cycle	Bachelor (1 st cycle)
1.6 Study program/Qualification	Electromechanics / Bachelor of Engineering

2. Datarelated to the subject

2.1 Name of the subject	RENEWABLE SOURCES				
2.2 Holder of the subject	2.2 Holder of the subject Assoc. prof. PANTEA MIRCEA DĂNUŢ				
2.3 Holder of the academic seminar/laboratory/project Assoc. prof. PANTEA MIRCEA DĂNUŢ					
2.4 Year of study 4 2.5 Semester	er 8	2.6 Type of the	Exam	2.7 Subject	Specialized
		evaluation		regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 2.2		3.3 academic	-/2/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	-/28/-
		course		seminar/laboratory/project	
Distribution of time					19 hours
Study using the manual, course support, bibliography and handwritten notes					7
Supplementary documentation using the library, on field-related electronic platforms and in field-				4	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				6	
Tutorials				-	
Examinations				2	
Other activities.					

3.7 Total of hours for	22
individual study	
3.9 Total of hours per	78
semester	
3.10 Number of credits	3

4. Pre-requisites(where applicable)

4.1 related to the	Basic knowledge of mathematics, physics, chemistry specific to the field of
curriculum	electrical engineering
4.2 related to skills	Extensive knowledge of chemistry and physics, but also of electricity

5. Conditions (where applicable)

5.1. for the development of	
the course	video projector, laptop, blackboard.
5.2.for the development of	
the academic	Mandatory presence at all laboratories;
seminary/laboratory/project	• •

6. Spe	cific skills acquired					
	- C1. Proper implementation of specific fundamental knowledge of mathematics, physics,					
ıal	chemistry, in the field of electrical engineering					
ior	- C3. Use of fundamental knowledge of electrotechnics					
ess	- C6. Diagnosis, troubleshooting and maintenance of electrical systems and components					
Professional skills						
P S						
	- CT1. Identification of the objectives to be achieved, available resources, conditions to complete					
	them, working stages, working times, associated deadlines and risks					
-E	- CT2. Identification of the roles and responsibilities in a multidisciplinary team and use of					
ersa	relationship and effective working techniques in the team					
SV6	- CT3. Effective use of information and communication sources and assisted professional traini					
Transversal skills	(Internet portals, specialized software applications, databases, online courses etc.) both in Romanian					
T 3	and in a foreign language.					

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

THE OBJECTION	sof the discipline (resulting from the grid of the specific competences acquired)		
7.1 The	The course "New energy sources" aims to present energy phenomena in terms of		
general	applications in technology and is addressed to students in the engineering department,		
objective of	both in electrical engineering.		
the subject	Being a fundamental specialized discipline, its object is to present in a unitary		
	framework, natural phenomena and resources as well as some applications in this field,		
	necessary for knowing how to design and apply them.		
7.2 Specific	In addition to the skills offered by the laboratory sessions in the electrical field, they also		
objectives	offer the possibility to evaluate the errors in the experimental determinations performed,		
	but also a better collaboration with colleagues in team work.		

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Course I. Introduction and presentation of objectives		2
Course II Solar energy		2
Course III Solar cells		
Course IV. Wind energy		2
Course V. Development of wind engineering	Video projector,	2
Course VI. Wind turbines. Basic principles	slides	2
Course VII. The energy of the seas and oceans	Interactive	2
Course VIII. Geothermal energy	blackboard	2
Course IX. Geothermal systems	teaching	2
Course X. Hydrogen		2
Course XI. Fuel cells		2
Course XII. Thermoelectric conversion		2
Course XIII. Nuclear power		2
Course XIV. The current stage of installation of nuclear power plants		2

Bibliography

- 1. Mircea Pantea, New sources of renewable energy Volume 1 ISBN: 978-973-759-580-5, ISBN Vol 1. 978-973-759-581-2, 2008
- 2. Hall D. O., House J., Biomass as a Modern Fuel, ISES World Congress, Budapest, 1993
- 3. Ursu I., Physics and technology of nuclear materials, RSR Academy Publishing House, Bucharest, 1982
- 4. Buta A., General energy and energy conversion, "Traian Vuia" Polytechnic Institute of Timișoara, Faculty of Electrical Engineering, 1982
- 5. Niţu, V., ş. a., General energy and energy conversion, Didactic and Pedagogical Publishing House, Bucharest, 1980
- 6. Tomescu F. M., Energy conversion and sources, Bucharest Polytechnic Institute, 1975

8.2 Laboratory	Teaching methods	No. of hours/
-	-	

		Observations
1. Speed regulation and tracing of operating characteristics (both current - voltage and	Laboratory presentation	4
current - resistance) to 6 12 V motors powered		
by a 1.5 W solar panel, and filtering the supply		
voltage		
l orings		
2. Light-dependent resistance	Based on the report prepared by the	4
3. Photodiode	students, after a discussion with the	4
4. The phototransistor	teacher on the paper, we proceed to	6
5. Heating of domestic hot water with the help	identify the stand, the components	4
of solar panels from the laboratory equipment.	necessary for the work, after which the	
6. Materials available for LED devices	students make the assembly of the	2
	practical part of the paper and only	
	together with the teacher make	
	inexhaustible determinations.	
	At the end, the results obtained face to	
	face are interpreted	
7. Conversion of wind energy into electricity.	Students take tests from all laboratory	4
Valslr PP-H HTM.DN 110. EN1451	work.	

Bibliography

- 1. Mircea Pantea, New sources of renewable energy Volume 1 ISBN: 978-973-759-580-5, ISBN Vol 1. 978-973-759-581-2, 2008
- 2. Buta A., General energy and energy conversion, "Traian Vuia" Polytechnic Institute of Timişoara, Faculty of Electrical Engineering, 1982
 - 3. Tomescu F. M., Energy Conversion and Sources, Bucharest Polytechnic Institute, 1975
- 4. Ursu I., Physics and technology of nuclear materials, RSR Academy Publishing House, Bucharest, 1982
- 5. Niţu, V., ş. a., General energy and energy conversion, Didactic and Pedagogical Publishing House, Bucharest, 1980
 - 6. Niţu, V., Theoretical bases of energy, RSR Academy Publishing House, Bucharest, 1977
 - 7. Hall D. O., House J., Biomass as a Modern Fuel, ISES World Congress, Budapest, 1993
 - 8. Appelbaum J., Solar Cell Analysis, ISES World Congress, Budapest, 1993
 - 9. http://www.lpelectric.ro/en/index en.html
 - 10. www.panosolare.com
 - 11. www.naturenergy.ro
 - 12. www.dual-art.ro
 - 13. http://re.jrc.ec.europa.eu/pvgis/apps3/pvest.php

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is adapted and satisfies the requirements imposed on the labor market, being agreed by the social partners, professional associations and employers in the field related to the bachelor program. The content of the discipline is found in the curriculum of the ELECTROMECHANICS specialization and from other university centers in Romania that have accredited this specialization, so the knowledge of the basic notions is a stringent requirement of the employers in the field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the	
			final mark	
10.4 Course	-	Written examination	70 %	
10.6 Laboratory	-	Knowledge assessment	30 %	
test				
10.8 Minimum performance standard:				
offers the formation of skills in the energy field and highlights both the phenomena and methods of				

conversion of solar, wind, nuclear, geothermal, etc. a. in electricity.

Signature of the course holder

Signature of the laboratory project holder

Ş.l.dr.ing. Pantea Mircea

Ş.l.dr.ing. Pantea Mircea

Completion date:

29.08.2022

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building Corp V,

floor 2, room V 213

Postal code 410087, Oradea, Bihor

county, Romania

E-mail: mirceadanutpantea@gmail.com

Discord MirceaPD # 1994

Date of endorsement in the department:

01.09.2022

Signature of the department director

Prof.univ.dr.ing.inf. Francisc - Ioan HATHAZI

Contacts:

University of Oradea, Faculty of I.E.T.I.

Str. University, no. 1, Building Corp A, floor 2, room A 206 Postal code 410087, Oradea, Bihor county, Romania Tel: 0259-408172, E-mail: francisc.hathazi@gmail.com

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel.: 0259-408204, E-mail: mgordan@uoradea.ro

Date of endorsement in the Faculty Board:

23.09.2022

Signature of the Dean

Prof.univ.dr.ing. Mircea Ioan GORDAN

Contacts:

University of Oradea, Faculty of I.E.T.I. Str. University, no. 1, Building I, Room I003, Postal code 410087, Oradea, Bihor county, Romania Tel.: 0259-408204, E-mail: mgordan@uoradea.ro