1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/ Master of Science in Engineering

2. Datarelated to the subject

2.1 Name of the su	bject		Manufacturing automation systems					
2.2 Holder of the subject		Conf. PhD eng. Tiberiu Barabas						
2.3 Holder of the academic laboratory/project			Co	Conf. PhD eng. Tiberiu Barabas				
2.4 Year of study		2.5 Semest	er	1	2.6 Type of the	Ex	2.7 Subject regime	THD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2 course	2	3.3 academic laboratory/project	1/-
3.4 Total of hours from the curriculum	42	Of which: 3.5 course	28	3.6 academiclaboratory/project	14/-
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					17
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					24
Tutorials					2
Examinations					4
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites(where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);

		- The frequency at laboratory hours below 70% leads to the restoration of the discipline
6. Spec	ific skills acquired	
Professional skills	•	n of control systems, software structure for real-time control applications, terfaces, artificial vision, automated manufacturing systems.
Transversal skills		s and responsibilities in a multi-specializedteam, decisions making and sks, applying relationshipstechniques and efficient work within the team

	or one anserprine (resulting from the grat or the specific competences and another
7.1 The	• Fundamentals on the architecture of automated manufacturing systems in the
general	CIM (Computer Integrated Manufacturing) concept, studying system
objective of	components and information processing. Familiarity with the specific problems
the subject	of modeling, simulation and management of automated manufacturing systems.
7.2 Specific	• The course aims to present the theoretical elements related to the architecture,
objectives	modeling and simulation of the operation of automatic manufacturing systems.
	The laboratory familiarizes students with practical aspects of the management of
	automated manufacturing systems.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
Cap.1.Introduction to automatic manufacturing systems. Cim concept. Cap.2. Flexible Manufacturing Systems (FMS). Cap.3. Manufacturing automation structures used in CIM systems. Cap.4. Open architecture control equipments for CIM systems Cap.5.Modelling and simulation of the operation of automatic manufacturing systems. Petri networks. Cap.6.Simulation of the operation of robotic manufacturing cells using the ROBO-DK programming environment.	Free exposure, with the presentation of the course with video projector, on the board or online	4h 6h 6h 6h 4h 2h

Bibliography

- 1. T. Barabas, Structuri deschise de automatizare a fabricației din cadrul hipersistemelor CIM robotizate, Editura Universității Oradea, 2004;
- 2. Th. Borangiu s.a. Conducerea multiprocesor în timp real a structurilor flexibile de fabricatie Ed.Tehnicã, 1989
- 3. S.Călin s.a. Conducerea adaptivă si flexibilă a proceselor industriale, Ed.Tehnicã, 1988
- 4. M. Ganea, T. Barabas, Sisteme flexibile Roboţi şi linii flexibile Îndrumător de laborator, Editura Universității Oradea, 2000
- 5. Kovacs, Fr. și col, **Sisteme de fabricație flexibilă robotizate,** vol. I-II., Universitatea "Politehnică" Timișoara, 1994

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory and of the labor protection norms.	Students receive	2 h
2. The pallet manipulator at the entry point of the Regal storage.	laboratory papers	2 h

3. The Regal storage and the Stacker manipulator.	at least one week	2 h
4. The flow of parts and the control algorithm in CIM.	in advance, study	2 h
5. Management of the Regal storage.	them, inspect	2 h
6. Study of a ROBO-DK application to simulate the operation of a	them, and take a	2 h
manufacturing cell.	theoretical test at the beginning of	
7. Closing the situation at the laboratory.	the laboratory.	2 h
	Then, the	
	students carry out	
	the practical part	
	of the work under	
	the guidance of	
	the teacher	

1. 1. M. Ganea, T. Barabas, **Sisteme flexibile - Roboţi şi linii flexibile** – *Îndrumător de laborator*, Editura Universității Oradea, 2000de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Ediţie CD-ROM, 140 pag, 2014

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is similar to similar subjects taught at the University "Politechnics" Timisoara.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

work

10.6 Minimum performance standard:

Modeling, simulation and use/programming of automatic manufacturing systems.

Completion date:

01.09.2024

Date of endorsement in the department: 09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems Engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject Indus				strial networks			
2.2 Holder of the subject Assoc. prof. GERGELY				LY Eugen-Ioan			
2.3 Holder of the academic			Asso	c. prof. GERGEI	LY Eugen-Ioan		
seminar/laboratory/project							
2.4 Year of study	1	2.5	2	2.6 Type of	Examination	2.7 Subject	Thoroughgoing
		Semester		the evaluation		regime	Discipline

3. Total estimated time (hours of didactic activities per semester)

o. Total estimated time (modes of diddeti	o activ	tties per semiester	,		
3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	-/2/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	-/28/-
		course		seminar/laboratory/project	
Distribution of time					69 hours
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in field-					13
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					21
Tutorials					7
Examinations					2
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- The laboratory facility has to be provided with the necessary
the academic	equipments
seminary/laboratory/project	- Students presence to all laboratory/project hours is compulsory
	- Students must have summarized the current laboratory work
	- Maximum 4 laboratory works (30%) can be recovered during the
	semester
	- A participation below 70% at the laboratory works / project leads to the
	restoration of the subject
	- The laboratory hours can be carried out face to face or online

6. Spec	cific skills acquired
Professiona 1 skills	C1. Knowing the main types of economic processes and phenomena of communication, elements of microeconomic theory and practical aspects of financial and economic flows at business
Transversal skills	CT2. Identify the roles and responsibilities of each member of a pluri-disciplinary team and apply efficient work and relational techniques inside the team

7.1 The	■ The subject provides knowledge about the actual practices used for the design,
general	installation, commissioning and troubleshooting of the industrial communication
objective of	networks. The presented notions do not intend to make a ranking of the existing
the subject	networks from the point of view of their performances. The main goal is to provide the
J	necessary data for choosing the most adequate standards and technologies for a given
	application. The laboratory works are based on SIMATIC S7-300 PLCs and contain
	applications based on PROFIBUS DP.
7.2 Specific	To create skills for being able to analize, design, implement and maintain industrial
objectives	communication networks.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introductory aspects	face to face or	2 hours
	online	
	interactive	
	presentation	
2. Network topologies. The ISO/OSI model	face to face or	4 hours
	online	
	interactive	
	presentation	
3. Communication media	face to face or	6 hours
	online	
	interactive	
	presentation	
4. The standards RS-232 and RS-485	face to face or	2 hours
	online	
	interactive	
	presentation	
5. The TCP/IP protocol. The Modbus protocol	face to face or	2 hours
	online	
	interactive	
	presentation	
6. The Industrial Ethernet protocol	face to face or	2 hours
	online	
	interactive	
	presentation	
7. The AS-i interface. The DeviceNet interface	face to face or	2 hours
	online	
	interactive	
	presentation	
8. The Profibus PA/DP/FMS interface. The Foundation Fieldbus interface	face to face or	2 hours
	online	
	interactive	

	presentation	
9. The Modbus Plus protocol. The Data Highway Plus protocol. The Hart	face to face or	2 hours
protocol	online	
	interactive	
	presentation	
10. Wireless technologies	face to face or	4 hours
	online	
	interactive	
	presentation	

- 1. E. Gergely, Helga Silaghi, V. Spoială, L. Coroiu, Z. Nagy, Automate programabile. Operare, programare, aplicații, Editura Universității din Oradea, Oradea, ISBN 978-973-759-940-7, 2009.
- 2. L. M. Thompson, Industrial Data Communications, 4th Edition, ISA, 2007.
- 3. D. Reynders, S. Mackay, E. Wright, Practical Industrial Data Communications: Best Practice Techniques, Elsevier, 2005

Elsevier, 2005		
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Labor protection. Presentation of laboratory works.	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
2. Presentation of the use of S7-300 for PROFIBUS communication.	equipments	2.1
2. Presentation of the use of 87-300 for PROFIBUS communication.	Laboratory work	2 hours
	summary and	
	practical demonstrations	
	using specific	
	equipments	
3. Addressing methods.	Laboratory work	2 hours
5. Tame 555 mg incurous.	summary and	2 1100115
	practical	
	demonstrations	
	using specific	
	equipments	
4. Working with GSD files	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
5. Working with the organizational blocks OB82, OB86 and OB122	Laboratory work	2 hours
	summary and	
	practical demonstrations	
	using specific	
	equipments	
6. Configuring remote I/Os for PROFIBUS	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
7. Troubleshooting the communication	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
0.11. 4 F0107.6 6 1 6	equipments	2.1
8. Using the FC125 function for programming diagnostic functions	Laboratory work	2 hours
	summary and	

	practical	
	demonstrations	
	using specific	
	equipments	
9. Using the Sync/Freeze commands	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
10. Deactivating I/O devices	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
11. Reading the diagnostic data from a slave station	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
12. Using a CPU as slave	Laboratory work	4 hours
	summary and	
	practical	
	demonstrations	
	using specific	
	equipments	
13. Completion of the laboratories situation	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
D.1.1.	equipments	
Bibliography		

- 1. Gergely E., Rețele industriale, Lucrări de laborator.
- 2. http://support.automation.siemens.com.
- 3. xxx SIMATIC NET, PROFIBUS Networks, User Manual, SIEMENS, 2004
- 4. xxx Introduction To ProfiBus DP, Tehnical Reference, ACROMAG INCORPORATED, USA, 2004
- 5. xxx PROFIBUS, Technology and Application, PROFIBUS Competence Centers, 2005

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2
		Evaluati
		methods
		The
		evaluation
		can be
		made fa
		to face of
		online
10.4 Course	Minimum required conditions for passing the exam	Written

		1
	(mark 5): in accordance with the minimum	examina
	performance standard	
	- For mark 10:	
	- thorough knowledge regarding the network topologies	
	and the ISO/OSI model	
	- thorough knowledge regarding the serial and parallel	
	communication standards	
	- thorough knowledge regarding the industrial standards	
	and wireless communication	
	- thorough knowledge regarding the safety and security	
	in industrial networks	
	- thorough knowledge regarding the design techniques	
	for industrial networks	
10.6 Laboratory	Minimum required conditions for promotion (grade 5):	Knowle
	in accordance with the minimum performance standard	assessm
	- For mark 10:	test
	- thorough knowledge regarding the S7-300 PLC	
	- thorough knowledge regarding the communication	
	through PROFIBUS	
	- thorough knowledge regarding the master-slave	
	communication	
10.034.		

10.8 Minimum performance standard:

Course:

- knowledge regarding the network topologies and the ISO/OSI model
- knowledge regarding the serial and parallel communication standards
- knowledge regarding the industrial standards and wireless communication
 knowledge regarding the safety and security in industrial networks
- knowledge regarding the design techniques for industrial networks

Laboratory:

- knowledge regarding the S7-300 PLCknowledge regarding the communication through PROFIBUS
- knowledge regarding the master-slave communication

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Ad	lvan	ced electrical drives	5		
2.2 Holder of the subject			Pr	of. P	hD eng. Helga Silaghi	ì		
2.3 Holder of the academic		Prof. PhD eng. Helga Silaghi						
laboratory								
2.4 Year of study I 2.5 Semest		er	1	2.6 Type of the	Ex	2.7 Subject regime	THD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic laboratory	1
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic laboratory	14
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays 2					28
Tutorials					
Examinations 9					9
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

ev conditions (where approximate)					
5.1. for the development of	- Attendance at least 50% of the courses				
the course	- The course can be held face to face or online				
5.2.for the development of	- The laboratory can be carried out face to face or online				
the academic	- The frequency at laboratory hours below 70% leads to the restoration of				
seminary/laboratory/project	the discipline				

6. Spec	ific skills acquired
Professional skills	C4. Setting up and implementing control systems related to electrical drives, advanced electrical drives
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team

7. The objectives of the discipline (resulting from the grid of the specific competences dequired)					
7.1 The general objective of the subject	The discipline has as objective the familiarization of the students from the master's specialization Advanced Control Systems, with the field of advanced electric drives.				
7.2 Specific objectives	 The course aims to present the theoretical elements of the technique of of advanced electric drives. The laboratory provides the necessary knowledge to the students to be able to know and operate an advanced electric drive 				

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Advanced electric drives with DC servomotors	Free exposure, with the presentation of	4h
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
2. Advanced electric drives with asynchronous servomotors	with the	4h
	presentation of	
	the course with	
	video projector, on the board or	
	online	
	Omme	
	Free exposure,	
3. Advanced electric drives with synchronous servomotors	with the	4h
·	presentation of	111
	the course with	
	video projector,	
	on the board or online	
	Free exposure,	
4. Advanced electric drives with stepper motors	with the	
Auvanced electric drives with stepper motors	presentation of	6h
	the course with	
	video projector,	
	on the board or	
	online	

5. Variable frequency induction machine control systems	Free exposure, with the presentation of the course with video projector, on the board or online	6h
6. Advanced electric drives with linear motors	Free exposure, with the presentation of the course with video projector, on the board or online	4h

- 1. SILAGHI H., SPOIALĂ V., SILAGHI M. Acționări electrice, Editura Mediamira, Oradea, 2009
- 2. SILAGHI, H., SPOIALĂ, VIORICA, Acţionări electrice-probleme fundamentale şi noţiuni de proiectare, Ed. Universității din Oradea, 2002
- 3. SILAGHI H., SILAGHI M. Sisteme de acționări electrice cu mașini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIALĂ D., SPOIALĂ VIORICA, Maşini electrice şi sisteme de acţionări electrice, vol.II, Ed. Universității din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIALĂ, HELGA SILAGHI, Acționări electrice speciale, Editura Universității din Oradea, 2010
- 7. HELGA SILAGHI, V. SPOIALA, D.SPOIALA, A. SILAGHI *Acţionări electrice avansate*, Editura Universității din Oradea, Oradea, ISBN 978-606-10-2035-5, 157 pg., 2019

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Presentation of the laboratory, of the labor protection norms and of the conventional signs specific to the field of electric drives. Control of the main shaft to the machine tool GPR 45 NC. Speed selection Control of advances to the GPR 45 NC machine tool Control the revolver head on the GPR 45 NC machine tool Microcontroller control of direct current servomotors Microcontroller control of stepper motors Closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, and carry out the practical part of the work under the guidance of the teacher.	2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h

Bibliography

- 1. Silaghi Helga, Spoială Viorica, *Proiectarea acționărilor electrice*, Îndrumător de proiectare, Editura Universității din Oradea, 2009
- 2.Helga Silaghi, V. Spoiala, D.Spoiala, A. Silaghi *Acționări electrice avansate*, Editura Universității din Oradea, Oradea, ISBN 978-606-10-2035-5, 157 pg., 2019
- 3. Viorica Spoială, Helga Silaghi, Dragoș Spoială *Acţionări electrice*. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Ediţie CD-ROM, 140 pag, 2014
- 4. Helga Silaghi, Viorica Spoială, Claudiu Costea, *Acționări electrice* îndrumător de laborator, Editura Universității din Oradea, 126 pg, 2008

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Advanced Control Systems and from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral examination Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Ethics and integrity in scientific research					
2.2 Holder of the subject		Lect. PhD jr. Anca PĂCALĂ						
2.3 Holder of the acseminar/laboratory			Lect. PhD jr. Anca PĂCALĂ					
2.4 Year of study	Ι	2.5 Semest	er	2	2.6 Type of the evaluation	Continuous Assessment	2.7 Subject regime	SYD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	1	of which: 3.2	1	3.3 academic	-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	14	3.6 academic	-
		course		seminar/laboratory/project	
Distribution of time					
Study using the manual, course support, bibliography and handwritten notes					20
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					
Tutorials					
Examinations					
Other activities.					

3.7 Total of hours for	36
individual study	
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

	to uppliouslo)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	
the academic	
laboratory/project	

6. Specific skills acquired

CT1. Responsibly apply the principles, norms and values of professional ethics in order to achieve the goals and identify the objectives, the available resources, the steps to be done and time spent for finishing the works, the deadlines, and the risks involved.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	Knowledge, understanding, explanation and interpretation of concepts specific to
general	ethics and integrity in scientific research for their application in the development
objective of	of a responsible professional career.
the subject	
7.2 Specific	The course aims to familiarize students with the notions of ethics, integrity in
objectives	scientific research; acquiring the knowledge and skills necessary to apply the
	rules of ethics in scientific research

8. 8. Contents

8.1.Course	Teaching methods	No. of hours/ Observations
The concept of ethics; general aspect of the ethics in scientific research. Regulations on ethics in Romanian universities.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
Integrity in the educational system: integrity standards, promotion of academic integrity, violations of academic integrity, good practices.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
Ethical issues of research and publication: plagiarism, forms of plagiarism. Other forms of academic dishonesty.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
Justice and equity in academic organizations and research teams. Legal provisions applicable to the ethics and integrity of scientific research.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
Elaboration of a scientific paper according to the principles of ethics and academic integrity	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Ariely, D. (2012). *Adevărul (cinstit) despre necinste. Cum îi mințim pe toți dar mai ales pe noi înșine.* București: Editura Publica
- 2. Proiect PODCA 2013. Ghid practic privind cercetarea stiintifica
- 3. Pisoschi, A., Vacariu V, Ioana Popescu I. 2006. Etica în cercetare,
- 4. Singer, P. (2006), *Tratat de Etică*, București: Editura Polirom
- 5. Şarpe, D., Popescu, D., Neagu, A., Ciucur, V., (2011), Standarde de integritate în mediul universitar, UEFISCDI, Bucuresti.
- 6.Şercan, Emilia, (2017), Deontologie academică. Ghid practic, Editura Universității București
- 7. L.E.N- 1/2011
- 8. Legea 8/1996 privind drepturile de autor
- 9. Legea 206/2004 privind buna conduită în cercetarea științifică, dezvoltarea tehnologică și inovare

8.2 Academic seminar/laboratory/project	Teaching methods	No. of hours/
		Observations

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

Knowledge of these notions is a stringent requirement of vocational training. The content of the discipline is correlated with the need to train responsible adults, able to apply and respect the principles of ethics and integrity in personal and professional life.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
Type of activity	10.1 Evaluation criteria		
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Oral examination	100 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	2 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10: thorough		
	knowledge of all subjects		
	is required		

10.6 Minimum performance standard:

Course: - Knowledge of the essential notions in the field of ethics and integrity in scientific research; - Ability to know and recognize the extent of one's rights and obligations as a researcher;

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject Computer vision and image processing								
2.2 Holder of the subject			Lect. PhD eng. Viorica Spoială					
2.3 Holder of the academic laboratory			Le	ct. P	hD eng. Viorica Spoia	ală		
2.4 Year of study I 2.5 Semest		er	2	2.6 Type of the evaluation	Ex	2.7 Subject regime	THD	

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2	
		course				
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28	
		course				
Distribution of time ho						
Study using the manual, course support, bibliography and handwritten notes						
Supplementary documentation using the library, on field-related electronic platforms and in field-related places						
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays						
Tutorials						
Examinations 9						
Other activities.						

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

ii i i e i equisices (milei	c applicatio)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	Matlab software knowledge

5.1. for the development of	- Attendance at least 50% of the courses
the course	
5.2. for the development of	- Matlab software
the academic	- The frequency at laboratory hours below 70% leads to the restoration of
seminary/laboratory/project	the discipline
6. Specific skills acquired	

Professional skills	C3. Control systems implementation, software structures for real-time control processes, human-machine interfaces, computer vision, manufacturing automated systems
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team

7.1 The general objective of the subject	Is the comprehension of the working principle of a computer vision system and the principle of images acquisition and processing.
7.2 Specific objectives	 The course aims to present the digital representation of images, modalities of improving the quality of images, filtering, spectral analysis, morphological transforms, segmentation and compression of images. The laboratory is oriented to image acquisition and processing using <i>Image Acquisition Toolbox</i> and <i>Image Processing Toolbox</i> in Matlab.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction in computer vision and image processing	Free exposure, with the presentation of the course with video projector, on the board	2h
2. Image representation	Free exposure, with the presentation of the course with video projector, on the board	3h
3. Image aspect improvement	Free exposure, with the presentation of the course with video projector, on the board	4h
4. Integral transforms of images	Free exposure, with the presentation of the course with video projector, on the board	4h

5. Image restoration	Free exposure, with the presentation of the course with video projector, on the board	2h
6. Mathematical morphology	Free exposure, with the presentation of the course with video projector, on the board	4h
7. Image segmentation and compression	Free exposure, with the presentation of the course with video projector, on the board	3h
 8. Using the artificial intelligence in computer vision - Machine Learning - Deep Learning - Neural networks 	Free exposure, with the presentation of the course with video projector, on the board	6h
Total		28h

- 1. Viorica Spoială, Vedere artificială și prelucrarea imaginilor, curs în format electronic, 2021
- 2. Rafael Gonzalez, Richard Woods, Digital Image Processing Third Edition, Pearson Prentice Hall, 2008
- **3**. Cristian Grava, Vasile Buzuloiu, *Elemente de prelucrarea și analiza imaginilor*, Editura Universității din Oradea, 2007
- 4. Richard Szeliski, Computer Vision: Algorithms and applications, Springer, 2010
- **5.** Brostow, Gabriel J., Julien Fauqueur, and Roberto Cipolla. "Semantic object classes in video: A high-definition ground truth database" *Pattern Recognition Letters* 30.2 (2009): 88-97.
- **6.** Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam, "Encoder-Decoder

with Atrous Separable Convolution for Semantic Image Segmentation." © Springer Nature Switzerland AG, ECCV 2018, LNCS 11211, pp. 833–851, 2018.

https://doi.org/10.1007/978-3-030-01234-2 49

7. Yanming Guo, Yu Liu, Theodoros Georgiou, Michael S. Lew, "A review of semantic segmentation using

deep neural networks", International Journal of Multimedia Information Retrieval, Springer Link, pp.87-93,

2018.

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Presentation of the laboratory, of the labor protection norms. Webcam app installation and use for real-time image acquisition with Matlab Matlab functions used for image acquisition, image conversion and manipulation Image representation in Matlab Image aspect improvement in Matlab Punctual operators for changing image contrast. Image histogram in Matlab Image filtering in Matlab 	Students receive laboratory papers at least one week in advance, study them, and carry out the practical part of the work under the guidance of the	2 h 2 h 2 h 2 h 2 h 2 h
6. Image filtering in Matlab	teacher.	2 h
7. Fourier transform used for image analysis and processing in		4 h

Matlab	
8. Frequency response of linear filters used for images in Matlab	2 h
9. Morphological transforms of images in Matlab	2 h
10. Objects' detection from images in Matlab.	2 h
11. Image segmentation using ImageSegmenter app in Matlab	2 h
12. Semantic segmentation of images in Matlab, using Deep	2 h
Learning method	
13. Recoveries and finish of the laboratory.	2 h
TOTAL	28 h

- 1. Spoială Viorica, *Vedere artificială și prelucrarea imaginilor*, îndrumător de laborator în format electronic, 2022
- **2.**https://ch.mathworks.com/products/image.html
- **3.** https://www.mathworks.com/help/vision/ug/getting-started-with-semantic-segmentation-using-deep-learning.html
- **4.** https://www.mathworks.com/help/vision/ug/label-pixels-for-semantic-segmentation.html
- **5.** https://www.mathworks.com/help/vision/ug/get-started-with-the-image-labeler.html

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in other connected curriculum from other universities accredited, for example "Politehnica" University of Timisoara and knowledge of the working mode of computer vision and image processing systems is very important for the employment in any engineering field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (grade 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral examination Each student receives for solving a form with subjects of theory from all the courses.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard, the students have to know acquire images and apply simple processing functions on them, without details For 10: detailed knowledge of how to	Practical application Each laboratory consists of exercices in Matlab for which students receive a grade. All the grades are averaged and so results the grade for the laboratory.	40%

perform all laboratory work	
WUIK	

10.6 Minimum performance standard:

Course:

Description of working principle of digital systems used for acquiring and processing images.

The ability of distinguish color images representation from binary or grayscale representation.

Filtering image methods description and their results.

Mathematical description of morphological transforms for images.

Knowing the principles that are the base for segmentation and compression of images.

Students participation at least a half of courses.

Laboratory:

Abilities to use Matlab functions for image acquisition and image processing (conversions, histogram generation, filtering, spectral analysis with Fourier transform, morphological transforms, segmentation, compression).

Students participation at all the laboratories.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Completion date:

04.09. 2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control Systems Engineering
1.5 Study cycle	Master(2 st cycle)
1.6 Study program/Qualification	Advanced Control Systems

2. Datarelated to the subject

2.1 Name of the su	bject	-	Inteligent Process Control Methods					
2.2 Holder of the subject				Assoc. Prof. PhD Sanda Dale				
2.3 Holder of the academic laboratory/project			Ass	soc.	Prof. PhD Sanda Dale	e		
2.4 Year of study	V	2.5 Semest	er	8	2.6 Type of the evaluation	Ex	2.7 Subject regime	DAP

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic laboratory/project	2/0
3.4 Total of hours from the curriculum	56	Of which: 3.5 course	28	3.6 academic laboratory/project	28/0
Distribution of time					69
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					18
Preparing academic seminaries/laborato	ries/ th	nemes/ reports/ po	rtfolio	s and essays	21
Tutorials					0
Examinations					4
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites(where applicable)

4.1 related to the	Knowledge of mathematics, physics, theory of linear and nonlinear systems,
curriculum	Control engineering
4.2 related to skills	Conventional Control Systems Analysis and Design, Real-Time Programming,
	Modeling and Simulation in MATLAB-SIMULINK

5.1. for the development of	- consulting the bibliography related to the topic discussed at the course			
the course	- the course can be held face to face or online			
5.2.for the development of	- Carrying out documentation related to the theme of the laboratory			
the academic	- Going through the necessary steps for the realization of the lab			
laboratory/project	application;			
	- The lab can be conducted face-to-face or online			
6. Specific skills acquired				

Professional skills	C2. Design of process control, distributed control systems, process control intelligent methods, hybrid control systems, advanced unconventional process control competences
Transversal skills	TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives	• The objectives of the discipline (resulting from the grid of the specific competences acquired)					
7.1 The	- providing knowledge on the design of control systems based on fuzzy logic and neural					
general	networks;					
objective of	- knowledge regarding the formation of skills related to the manipulation of uncertainties					
the subject	due to nonlinearities, modelling errors and disturbances, system correction and analysis					
	of the system sensitivity to parameter variation and disturbances;					
7.2 Specific	- The course aims to present the theoretical and practical elements on control of dynamic					
objectives	fuzzy and neural systems.					
	- The lab familiarizes students with practical aspects of analysis by control systems					
	simulations using MATLAB&SIMULINK.					

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
CHAPTER 1. Elements of fuzzy set theory and reasoning with fuzzy notions: Language variables. Defining variables linguistic functions with the help of belonging functions. Reasoning with vague notions. Operators of fuzzy logic. CHAPTER 2. Fuzzy Models Models based on Mandani rules Takagi-Sugeno models CHAPTER 3. Fuzzy Control Preliminaries Structure of fuzzy regulators Fuzzification and defusification of variables Inference mechanisms CHAPTER 4. Aspects of the design of fuzzy control systems Fuzzy regulators with two input variables (error and error derivative); Fuzzy controllers with variable structure; Adaptive fuzzy controllers; Takagi-Sugeno fuzzy controllers.	Free exposure, supported by smart table presentations, on the blackboard or online	4h 4h 4h 4h
CHAPTER 5. Basic concepts of neural calculation CHAPTER 6. Network Training Models and Strategies		4h 4h
CHAPTER 7. Basics of expert systems		4h

Bibliography

- 1. Dale, S., Sisteme fuzzy și rețele neurale suport de curs, Editura Universității din Oradea, CD, 2023.
- 2. Dale, S., Contribuții la studiul sistemelor de reglare cu regulatoare de tip interpolativ, Editura Politehnica, Timișoara, 2006.
- 3. Bara, A., Sisteme fuzzy- Aplicații la conducerea proceselor, Editura UTPress, Cluj-Napoca, 2001.
- 4. MATLAB-SIMULINK <u>www.mathworks.com</u>

8.2 Academic laboratory	Teaching methods	No. of hours/ Observations
1. Presentation of the laboratory topic		2h

2. Mathematical modelling of an inverted pendulum. Obtaining state-space	Students study	2h
model.	the laboratory	
3. Mathematical modelling of an inverted pendulum. Getting IO model and	documentation	2h
Transfer Function 4. Modelling the inverted pendulum using MATLAB-SIMULINK 5. Designing a fuzzy position controller for an inverted pendulum 6. Modelling and simulating a fuzzy control system for the position control of an inverted pendulum	in advance and carry out the practical part of the application	2h 4h 4h
7. Designing of a neural position controller for an inverted pendulum	under the	4h
8. Modelling and simulating a neural control system for the position control	guidance of the	4h
of an inverted pendulum	teacher	
9. Analysis of the performance of systems for position control of an inverted		2h
pendulum, using MATLAB-SIMULINK		
10. Conclusion of the laboratory situation		2h

- 1. Dale, S., Sisteme fuzzy și rețele neurale suport de curs, Editura Universității din Oradea, CD, 2023.
- 2. Dale, S., Contribuții la studiul sistemelor de reglare cu regulatoare de tip interpolativ, Editura Politehnica, Timișoara, 2006.
- 3. Bara, A., Sisteme fuzzy- Aplicații la conducerea proceselor, Editura UTPress, Cluj-Napoca, 2001.
- 4. Dale, S., Sisteme fuzzy și retele neurale îndrumător de laborator, Editura Universității din Oradea, CD, 2023.
- 5. MATLAB-SIMULINK www.mathworks.com

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curricula of the Automation and Applied Informatics specialization in all accredited university centers and is meant to provide knowledge and skills related to the design and implementation of fuzzy and neural algorithms for linear and nonlinear systems

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or	10.3 Percent from the final mark
		online	
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard, it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral exam consisting in solving fuzzy and neural modelling and control problems by various methods	70 %
10.5 Laboratory	Minimum condition for promotion (grade 5): it is necessary to know the fundamental notions, methods and techniques of design and implementation of adjustment algorithms based on elements of artificial intelligence; For grade 10, skills are	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the	30%

required to apply design	laboratory.	
methods and techniques		
specific to fuzzy systems		
or neural networks and		
analysis of regulation		
performance as well as		
skills related to their		
implementation		

10.6 Minimum performance standard:

Course:

- Knowledge of the basic concepts and methods regarding design techniques that use elements of artificial intelligence (fuzzy systems, neural networks, etc.);
 - Skills in implementing control algorithms.
 - Control performance analysis skills

Laboratory:

- Skills to solve fuzzy and neural tuning problems related to design, implementation and analysis.

Completion date:

04.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Hy	brid	Control Systems			
2.2 Holder of the subject		Associate Professor Phd. eng. Sanda DALE						
2.3 Holder of the academic seminar/laboratory/project		Ass	socia	te Professor Phd. eng	g. San	da DALE		
2.4 Year of study	II	2.5 Semest	er	3	2.6 Type of the evaluation	Ex	2.7 Subject regime	THD

3. Total estimated time (hours of didactic activities per semester)

3. I otal estimated time (nours of didacti	c activ	ittles per semester	,		
3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	-/2/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28
		course		seminar/laboratory/project	
Distribution of time					94 h
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in field-					20
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					38
Tutorials					4
Examinations					4
Other activities.					

3.7 Total of hours for individual study	94
3.9 Total of hours per semester	150
3.10 Number of credits	6

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of algebra, mathematical analysis, computer programming, modeling			
curriculum	and simulation, system theory, control engineering, fuzzy systems and neural			
	networks, advanced control systems			
4.2 related to skills	Modeling and Simulation in MATLAB-SIMULINK			
	Design of tuning algorithms			
	Analysis of the performance of control systems			

7 1 C 1 1 1 C	
5.1. for the development of	- minimum 50% course attendance
the course	- the course can be held face-to-face or online
5.2.for the development of	- Carrying out documentation related to the theme of the laboratory
the academic	- Going through the necessary steps for the realization of the laboratory
seminary/laboratory/project	application;

		- The lab can be conducted face-to-face or online					
6. Spec	5. Specific skills acquired						
Professional skills		control, distributed control systems, process control intelligent methods, advanced unconventional process control competences.					
Transversal skills	assigning tasks, applying	roles and responsibilities in a plurispecialized team, making decisions and g techniques of effective relationships and team working.					

	7. The objectives of the discipline (resulting from the grid of the specific competences acquired)				
	7.1 The general	 Students to acquire general and thorough knowledge, aptitudes and skills 			
	objective of the subject	related to the structure, typology, specific issues on analysis and design for			
		hybrid control systems and developing new methods of approach for them			
	7.2 Specific objectives	 The course has the aim to present the concepts related to the approach 			
methodology		methodology of hybrid control systems from various domains, of some			
		specific strategy on analysis and design for HCS			
 During the lab work, the students develop and apply specific analysis and 		 During the lab work, the students develop and apply specific analysis and 			
	design methodologies for hybrid control systems of adaptive-interpolative				

8. Contents*

8. Contents*		
8.1 Course	Teaching methods	No. of hours/
		Observations
CAP 1. Introduction.		
1.1. Hybrid control systems. Definitions and concepts.		4h
1.2. Classifications for HCS. Types of HCS.		
CAP 2. Analog-discrete HCS		
2.1. Generalities	Free exposure,	4h
2.2. Aspects related to analog-discrete systems control	course presentation	411
2.3. Conclusions	on video projector,	
CAP 3. Intelligent hybrid systems	on the board or	
3.1. Generalities. Classifications.	online; debates on	
3.2. Neuro-symbolic systems	the exposed subjects	20h
3.3. Hybrid conventional-fuzzy systems		2011
3.4. Hybrid interpolative-adaptive systems		
3.5. Hybrid geno-neural control systems		

Bibliography

- 1. **S. Dale**, Sisteme de control hibride, notite de curs.
- 2. **S. Dale,** *Contribuții la studiul sistemelor de conducere de tip interpolativ*, Ed. Politehnica, Timișoara, 2006.
- 3. **D. Drechsel,** Regelbasierte Interpolation und Fuzzy Control, Vieweg, 1996.
- 4. **I. Dumitrache, C. Buiu,** Algoritmi genetici, Ed. Mediamira, Cluj-Napoca, 2000.
- 5. **A.V. Savkin, R..J. Evans,** *Hybrid Dynamical Control*, Birkhäuser, 2002.
- 6. Editori: **O.** Castillo, P. Melin, Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine, Springer Verlag, 2020.

F 8		
8.2 Laboratory	Teaching methods	No. of hours/
		Observations

1. 2. 3. 4.	Prezentarea tematicii de laborator. Studiul caracteristicilor unui motor de curent continuu Modelarea matematică a unui motor de curent continuu Studiul strategiilor de control hibride inteligente	Studenții studiază în	2h 2h 4h 4h
5.6.7.	Întocmirea schemei bloc a unui sistem de reglare hibrid de tip adaptiv-interpolativ pentru controlul poziției unui motor de curent continuu Proiectarea blocului regulator PI Proiectarea blocului adaptiv-interpolativ	avans documentația de laborator și realizează partea practică a aplicației sub îndrumarea	2h 2h 4h
8. 9. 10	Simularea sistemului de reglare adaptiv-interpolativă a poziției unui motor de curent continuu în MATLAB+SIMULINK. Obținerea de rezultate experimentale pentru validarea soluției. Încheierea situației de laborator	cadrului didactic	4h 2h 2h

Bibliografie

- 1. S. Dale, Sisteme de control hibride, îndrumător de laborator, variantă electronică.
- 2. S. Dale, Contribuții la studiul sistemelor de reglare cu regulatoare de tip interpolativ, Editura Politehnica, Timișoara, 2006.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found also in the curriculum of other academic centers with accreditation in this field (Universitatea "Politehnica" Timişoara, Universitatea Tehnică Cluj-Napoca, etc), and the approach of specific problems for the hybrid systems control engineering is a stringent requirement of the employers in the branch ((Plexus, Celestica, Comau, Continental etc).)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
			final mark
10.4 Course	Minimum required	Oral exam consists of	70%
	conditions for passing	solving problems of	
	the exam (mark 5): in	adaptive and adaptive-	
	accordance with the	interpolative modeling	
	minimum performance	and regulation through	
	standard, without	various methods	
	presenting details		
	For 10: throughout	The assessment can be	
	knowledge of all subjects	done face-to-face or	
		online.	
10.5 Laboratory	Minimum required	Oral presentation	30%
	conditions for passing	Based on the	
	the examination (grade	presentation of the	
	5): carrying out	project carried out during	
	laboratory work with the	the semester (in front of	
	data provided in each	their colleagues and the	
	paper	teacher), the student is	
	Grade 10: MATLAB-	evaluated and receives a	
	SIMULINK toolbox	grade.	
	operating skills and		
	proving skills in	The evaluation can be	
	addressing analysis and	done face to face or	
	design problems other	online.	
	design problems office		

- Knowledge of basic concepts related to the approach methodology of hybrid control systems, their typology and implementation posibilities
- Ability to identify, on particular cases, the proper hybrid control solutions Laboratory:
- abilities regarding: analysis of a hybrid control solution from the utility and adaptability point of view in reduced complexity cases
- the capacity to adopt specific implementation methods for a hybrid control system for simple processes

Completion date:

04.09. 2024

Date of endorsement in the department: 09.09.2024

Date of endorsement in the Faculty

Board: 10.09.2024

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/ Master of Science in Engineering

2. Datarelated to the subject

2.1 Name of the subject			Project development technology					
2.2 Holder of the subject		Lect. PhD eng. Coroiu Laura						
2.3 Holder of the academic		Lect. PhD eng. Coroiu Laura						
laboratory								
2.4 Year of study	II	2.5 Semest	ter 1 2.6 Type of the Ex 2.7 Subject regime			SYD		
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	1	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	14	3.6 academiclaboratory	28
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in field-				30	
related places					
Preparing academic seminaries/laborato	ries/ th	emes/ reports/ por	rtfolios	s and essays	36
Tutorials				2	
Examinations					4
Other activities.					

3.7 Total of hours for	108
individual study	
3.9 Total of hours per	150
semester	
3.10 Number of credits	6

4. Pre-requisites(where applicable)

	• uppriewore)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The project can be carried out face to face or online
the academic	- The frequency at project hours below 70% leads to the restoration of the
seminary/laboratory/project	discipline

6. Spec	ific skills acquired
ssio	C5. Preparation and implementation of project management in automation and applied informatics and related fields, project management, application of knowledge engineering quality legislation automated systems
unsvers Ils	CT2. Identify roles and responsibilities in a multi-specializedteam, decisions making and assigning tasks, applying relationshipstechniques and efficient work within the team CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development

	F = (
7.1 The general objective of the subject	• The discipline has as objective familiarizing the students from the master's specialization Advanced Control Systems, with the Project development technology and Management
7.2 Specific objectives	 The course aims to present the theoretical elements of the Project development technology. The project provides the necessary knowledge to the students about Project manager techniques and tools.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction. Construction of the project proposal	Free exposure, with the presentation of the course with video projector, on the board or online	2h
2. Organizing projects on project phases. The internal organizational structure of the projects.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
3. Project management tasks Project marketing Risk management	Free exposure, with the presentation of the course with video projector, on the board or online	2h
4. Controlul și asigurarea calității Raportarea rezultatelor proiectelor	Free exposure, with the presentation of the course with video projector, on the board or online	2h

5. Project manager techniques and tools The SWOT analysis	Free exposure, with the presentation of the course with video projector, on the board or online	2h
6. Evaluation techniques Planning techniques Project monitoring	Free exposure, with the presentation of the course with video projector, on the board or online	2h
7. Redactarea raportului tehnic Raportarea Terminarea proiectelor	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Laura Coroiu, Tehnica dezvoltarii proiectelor, curs în format electronic, 2019;
- 2. Mariana Mocanu, Carmen Schuster, *Managementul proiectelor Ed a II-a*, Colecția afaceri, Editura All Beck, București, 2004;
- 3. Daniela Florescu, Managementul proiectelor cu finanțare europeană, Editura C.H.Beck, București 2012;
- 4.O. Nicolescu, E. Burdus,... Ghidul managerului eficient, Vol 1, Editura Tehnică București 1993;
- 5.J.L. Koorey, D.B. Medley, *Management Information Systems*, South-Western Publishing Co. Cincinnati,Ohio, 1986;
- 6.K.C.Laudon, J.Price Laudon, *Management Information Systems*, A Contemporary Perspective, Macmillan Publishing Company, 1988.

8.2 Academic project	Teaching	No. of hours/
	methods	Observations
Project manager techniques and tools. Individual case studies	Students receive the project theme and design methodology and under the guidance of the teacher perform the project stages	28h

Bibliography

- 1. Laura Coroiu, Tehnicile managerului de proiect, Indrumător de proiect în format electronic, 2019;
- 2. Lonnie Pacelli, Consilierul managerului de proiect, Meteor Press 2007, ISBN 978-973-728-215-6;
- 3. Arieh Ullmann, Richard Romano, *Studii de caz în managementul românesc*, editura ACTAMI, București, 1996.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Advanced Control Systems in Engineering from other university centers that have accredited similar specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Project management is a stringent requirement of employers in the field (Comau, FaistMekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark

		done face-to-face or online	
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Oral examination Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5Project	Minimum required conditions for promotion (grade 6): a brief overview of the design stages For 10: going through all the design stages, with the completion of the calculations	Oral presentation Following the presentation of the project completed during the semester, each student receives a grade.	40%

10.6 Minimum performance standard:

Course: Solving and explaining problems of medium complexity, associated with the discipline of Project development technology.

Project: Elaboration of a business plan that aims at the management of the enterprise using knoledge of Project development technology.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Automatic system quality engineering					
2.2 Holder of the st	ubject	t	Pro	of. P	hD eng. Gabriela Ton	ţ		
2.3 Holder of the academic			Pro	of. P	hD eng. Gabriela Ton	ţ		
laboratory/project								
2.4 Year of study	II	2.5 Semeste	er	3	2.6 Type of the	Ex	2.7 Subject regime	DS
•					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time			69h		
Study using the manual, course support, bibliography and handwritten notes			30		
Supplementary documentation using the library, on field-related electronic platforms and in field-related places				10	
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			20		
Tutorials			0		
Examinations			9		
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

I I c I cquisices (,, mei	e application
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);

		- The frequency at laboratory hours below 70% leads to the restoration of the discipline
6. Speci	ific skills acquired	
Professional skills	engineering systems C6. Knowledge of k	echnological design of processes belonging to electric, electronic and energy s, structures and industry, according to quality requirements. The exercise is the field of management and communication in engineering and exercise between fields
Transversal skills	achieve the goals a time spent for finish TC2.Identify the ro	apply the principles, norms and values of professional ethics in order to nd identify the objectives, the available resources, the steps to be done and ning the works, the deadlines, and the risks involved. Oles and responsibilities of each member of a pluri-disciplinary team and and relational techniques inside the team.

7.1 The	Deepening students' knowledge on keeping under control, ensuring and
general	improving quality;
objective of	The main models of quality management systems, focusing on the model offered
the subject	by the ISO 9000 series of standards;
	elements related to the audit and certification of quality management systems
7.2 Specific	
objectives	

8. Contents*

8.1 Course	Teaching methods	No. of
		hours/
		Observations
1. The quality	Free exposure, with	
1. 1. The notion of quality. Definition and meanings	the presentation of	
1. 2. Quality characteristics	the course with video	2 h
1. 3. Quality components	projector, on the	2 11
1. 4. The quality loop. The spiral of quality	board or online	
1.1.1.5. Statistical quality management		
2. Quality assurance	Free exposure, with	
2.1 The concept of total quality	the presentation of	
2.2 Quality system	the course with video	
2.2.1 Main concepts	projector, on the	
2.2.2 The need to implement a quality system	board or online	
2.2.3 Situations in which the quality system is implemented		
2.2.4 ISO standards series 9000: 1994 on quality systems		2 h
2.2.5 Selecting the quality system model		2 11
2.2.6 Quality system documents		
2.2.7 Quality Manual - MQ		
2.2.8 System function procedures - PFS		
2.2.9 Working procedures / instructions-P / I-L		
2.2.10 Quality plans - PC		
2.2.11 Audit plans - PA Quality records - CI		

3. ISO standards series 9000: 2006 3.1 Quality and the year 2006 3.1.1 ISO 9000: 2006 standard 3.1.1.1 Vocabulary 3.1.1.2 Fundamental principles of quality management systems 3.1.2 The ISO 9001: 2006 standard 3.1.2.1 Characteristic features 3.1.2.2 The provisions of the standard 3.1.3 ISO 9004: 2006 standard	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
4. ISO standards series 9000: 2006 4.1 Quality and the year 2006 4.1.1 ISO 9000: 2006 standard 4.1.1.1 Vocabulary 4.1.1.2 Fundamental principles of quality management systems 4.1.2 The ISO 9001: 2006 standard 4.1.2.1 Characteristic features 4.1.2.2 The provisions of the standard 4.1.3 ISO 9004: 2006 standard	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
5. Quality costs5.1 Non-quality costs5.2 Structure of costs related to quality, to the manufacturer5.3 Structure of costs related to quality, to the beneficiary	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
6. Methods, techniques and tools of analysis and evaluation used to improve quality 6.1 Quality index method 6.2 Histogram method 6.3 Pareto Diagram 6.4 Dementia method (penalty for defects) 6.5 Direct comparative method 6.6 Cause-effect diagram	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
7. Benchmarking and its stages 7.1 The notion of benchmarking 7.2 Definitions of benchmarking 7.3 Brief history of benchmarking 7.4 Types of benchmarking 7.5 The benchmarking process 7.5.1 When do we use benchmarking? 7.5.2. Stages of benchmarking	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
8. Evaluation of cognitive enterprise processes, system of quality indicators 8.1 The system of quality indicators 8.2 Development and implementation of the quality indicators system 8.2.1 Systematic data collection 8.2.2 Evaluation and presentation of quality indicators at the appropriate management level 8.2.3 Initiation of interventions in case of unfavorable changes 8.2.4 Implementation of interventions according to the values of the indicators	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
9. The motivational system of quality management activities 9.1 The process of motivation 9.2 Motivational theories 9.2.1 Maslow: The theory of the hierarchy of needs 9.2.2 Herzberg: The two-factor theory 9.3 Process theory of motivation The integrated model of	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

motivation 9.4 Motivation tasks during the implementation and functioning of the quality management system		
10.Certification of quality management systems 10.1 Certification bodies 10.2 Staff certification 10.3 Terminology (according to EN 45000 series standards) 10.4 Areas of certification 10.5 Certification of products or services 10.6 Implications of affixing the CE marking 10.7 Products that require marking	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
11. Features and functions of quality management 11.1 Existence of the quality system 11.2 Integration in the management of the organization 11.3 Principles of quality management		
12. TQM Terminology Total quality Management through total quality	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
13. Excellence 13.1 The notion of excellence 13.2 The road to excellence 13.3 Models of excellence: EFQM, MBNQA etc. 13.4 Six Sigma 13.3 Quality Awards	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
14. Quality where? Integrated management systems 14.1 Other standardized management systems (environment, occupational health and safety, etc.) 14.2 Advantages of integrating management systems 14.3 Ways to achieve an integrated system Bibliography	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

- [1]. Panaite, V., Munteanu, R., Control statistic și fiabilitate, București, Ed. Didactică și Pedagogică
 - [2]. Cătuneanu V.M., Mihalache A., Bazele fiabilității, București, Ed. Tehnică, 1983
 - [3]. Gabriela Tonț Fiabilitatea sistemelor, Ed. Universității din Oradea, 2002;
 - [4]. Panaite, V, Popescu M., Calitatea produselor și fiabilitate, București, Matrix Rom, 2003;
 - [5]. Mihoc Gh., Muja A., Diatcu E., Bazele matematicii ale teoriei fiabilității, Cluj-Napoca, Ed. Dacia,

1976. Panaite, V., Munteanu, R., Control statistic și fiabilitate, București, Ed. Didactică și Pedagogică, 1982.

8.2 Academic laboratory	Teaching methods	No. of
		hours/
		Observations
Laboratory work	Students receive	
1. Descriptive analysis of the quality characteristic	laboratory papers at	2h
2. Variation intervals and stability of the technological	least one week in	4 h
manufacturing process	advance, study them,	
3. Making and interpreting a measurement histogram	inspect them, and	4 h
4. Control by measurement. Completion of the control sheet	take a theoretical test	4 h

5. Attribute control. Completion of the control sheet	at the beginning of	4 h
6. Dimensional control using statistical calculation	the laboratory. Then,	4 h
7. Capability analysis. Maintaining the accuracy of measuring and	the students carry out	4 h
control equipment	the practical part of	2 h
8. Closing the situation at the laboratory	the work under the	
	guidance of the	
	teacher	

Bibliografie

- [1]. Munteanu, R., Rusu, T., Introducere în ingineria calității, Editura Mediamira, Cluj-Napoca, 2002.
- [2]. Tont, G., Calitatea în electrotehnică, ISBN 973-613-544-6, Ed. Universității din Oradea, 2016;
- [3]. Olaru, M., Mangementul calității, Editura Economica, Bucuresti, 1999.
- [4]. Băleanu , Cristian Managementul îmbunătățirii continue, Editura Expert, București, 1996
- [5]. Mitonneau, Henri O nouă orientare în managementul calității: șapte instrumente noi, Editura Tehnică,

București, 1998

- [6]. Oprean, C., Managementul calității, Editura Univrsității "L. Blaga", Sibiu, 2002
- Stanciu, Ion, Managementul calității totale, Editura Cartea Universitară, București, 2003
- [7]. Popescu, S., s.a., Bazele Managementului Calitatii Editura Casa Cartii de Stiinta, Cluj Napoca, 1999, ISBN 973-9404-61-8
- [8]. 3. Hoyle, D., ISO 9000 Quality Systems Handbook, Fifth edition, Butterworth-Heinemann, 2005
- [9]. ***, Standardele: SR EN ISO 9000:2006, SR EN ISO 9001:2001, SR EN 9004:2001, SR EN
- 19011:2003, SR ISO/TS 16949:2004, SR EN ISO 22000:2005, ASRO
- [10]. http://www.bcub.ro/continut/unibib/calitatea indicator.php

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Control systems engineering and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5 Laboratory	- cunoștințe pentru nota	Test + aplicație	40%
	5: utilizarea indicatorilor	practică La fiecare laborator	
	statistici de variație și de	studenții primesc un test	

grupare; cunoștințe pentru nota 6 realizarea fișei de control prin măsurare; cunoștințe pentru nota 7: realizarea histogramelor, graficelor Gantt cunoștințe pentru nota 8: analiza SWOT; cunoștințe pentru nota 9 utilizarea corelațiilor in metodele de analiza a calității cunoștințe pentru nota 10	și o notă. De asemenea, fiecare student primește o notă pentru activitatea la laborator în timpul semestrului și pentru dosarul cu lucrările de laborator. Astfel rezultă o medie pentru laborator.	
,		
Interpretarea indicatorilor statistici ai		
procesului.		

10.6 Minimum performance standard:

Course: After completing the discipline students will be able to:

- After completing the discipline students will be able to:
- to configure a management system for an organization;
- to compose and analyze the factors that influence the quality of a product / service;
 - Participation in at least half of the courses.

SMC for a considered organizationLaboratory: the operating block scheme – system failure is drawn up, the implementation of the logical reliability scheme;

Ability to calculate and use statistical indicators for the calculation of statistical indicators for the statistical management of processes

- Participation in all laboratory work

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the su	bject		Ini	Innovative technological projects				
2.2 Holder of the si	ubject	-	Prof. PhD eng. Teodor Leuca					
2.3 Holder of the ac	caden	nic	Prof. PhD eng. Teodor Leuca					
laboratory/project								
2.4 Year of study	II	2.5 Semest	er	3	2.6 Type of the	Ex	2.7 Subject regime	SI
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic project	1
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic project	14
		course			
Distribution of time				83h	
Study using the manual, course support, bibliography and handwritten notes			30		
Supplementary documentation using the library, on field-related electronic platforms and in			14		
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			30		
Tutorials			0		
Examinations			9		
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all project hours;
the academic	- The project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);
	- The frequency at project hours below 70% leads to the restoration of the

	discipline
6. Speci	ific skills acquired
al skills	C2. Design of process control, distributed control systems, process control intelligent methods, hybrid control systems, advanced unconventional process control competences
Professional skills	C3. Implementation of control systems, software structure for real-time control applications, human-machine interfaces, artificial vision, automated manufacturing systems
Transversal skills	TC1.Responsibly apply the principles, norms and values of professional ethics in order to achieve the goals and identify the objectives, the available resources, the steps to be done and time spent for finishing the works, the deadlines, and the risks involved. TC2.Identify the roles and responsibilities of each member of a pluri-disciplinary team and apply efficient work and relational techniques inside the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general	♣ Implementing theories, ideas on the theoretical and design bases of innovation an technology management.
objective of	
the subject	* Training the necessary competencies for the objective assessment and retention b
	master students of the issue of innovation and technology management.
7.2 Specific	
objectives	

8. Contents*

8.1 Course	Teaching methods	No. of
		hours/
		Observations
1. Key aspects of innovation management	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
2. Innovation - as a management process	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
3. Elaboration of the necessary framework for the innovation strategy	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
4. The position of the national and competitive environment	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

5. Pathways: exploitation of technological trajectories	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
6. Processes: integration for strategic learning	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
7. The cognitive process based on market realities	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
8. Innovation and research and development in a European and global context	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
9. Project management: basics, definitions and concepts	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
10. Research project management: practices and specificities	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
11. Center for research and technological engineering in conversion of electromagnetic energy	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
12. Euro / regional scientific integration center Oradea / Debrecen	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

- 1.Abudi, Gina (2010): *Project Managers Need Ledership Skills*, URL: http://www.projectsmart.co.uk/project-managers-need-leadership-skills.html, site accesat ultima dat la: 24.01.2012.
- 2. Ciobotaru, Daniela / Milo, Teodor / Ciobotaru, Dan (2010): *Triunghiul de aur al realizării unui proiect tehnic: tehnic versus calitate, costuri de realizare, termene de execuție*, în: Buletinul AGIR, nr. 2-3, aprilie-septembrie, pp. 176-180.
- 3.Holzbaur, Ulrich D. (2009): *Project Management in Research*, în: Lategan, Laetus O. K. / Holzbaur, Ulrich D. (eds.), Managing applied research: theories, cases and perspectives, Aalener Schriften zur Betriebswirtschaft, pp. 40-52.

- 4.Pollack, Julien (2006): *The changing paradigms of project management*, în: International Journal of Project Management, doi: 10.1016/j.ijproman.2006.08.002.
- 5. Thomas, Graeme / Fernández, Walter (2008): *Success in IT projects: A matter of definition?*, în: International Journal of Project Management, 26, pp. 733-742.
- *Anexa A, Echipamente inovative de încălzire prin inducție, Teze de doctorat coordonate de profesor dr. ing. Teodor LEUCA, Biblioteca Universității din Oradea
- **Anexa B, Echipamente inovative de încălzire în câmp de înaltă frecvență, Teze de doctorat coordonate de profesor dr. ing. Teodor LEUCA, Biblioteca Universității din Oradea.

8.2 Academic project	Teaching methods	No. of
		hours/
		Observations
Innovative technologies in lighting Innovative electricity production systems - photovoltaic panels Innovative electricity production systems - wind turbines Control by measurement. Completion of the control sheet Smart buildings Communication protocols in electrical installations Electrothermal induction, radio frequency and microwave systems Smart relays The new generation of low voltage circuit breakers Computer and robotics systems microwave	Master students receive the design theme and design methodology and under the guidance of the teacher perform the project stages	10h
Conclusions		2h
Project support		2h

- 1. [Băloiu, Liviu, Mihail și Frăsineanu, Ioan Gestiunea inovației, Ed. Economică, București, 2001
- 2. Christensen, Clayton M The innovators dilemma, Harper Business Essentials, New York, 2000,
- 3. Phillips, Fred Y. Market oriented Technology Management Innovating for Profit in Entrepreneurial Times, Springer-Velag, Heidelberg, 2001
- 4. Tidd, Joe; Bessant, John şi Pavitt, Keith Managing Innovation, John Wiley & Sons Ltd, Chichester, West Sussexd, 2001
- 5. Utterback, James M Mastering the dynamics of innovation, Harvard Business School Press, Boston, 1996
- 6. Von Stamm, Bettina Managing Innovation, Desing & Creativity, John Wiley & Sons Ltd, Chichester, West Sussexd, 2003

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Advanced Control Systems from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Oral examination	60 %

	conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental	Students sustain an oral exam	
	notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required		
10.5 Project	- for grade 6, going through the design stages, without deepening the calculations - for grade 10, completion of all design stages, with completion of calculations and power supply and control diagrams	Oral support Following the presentation of the project made during the semester, each master student receives a grade, separate from the exam.	40%

10.6 Minimum performance standard:

- Critical evaluation of the strategic performance of the teams.
- Manifesting autonomy in choosing a learning route and demonstrating understanding of learning processes.
- Communicating project results, methods and key principles to an audience of specialists and non-specialists, using appropriate techniques.
- Careful observation, reflection and decision-making in order to change social norms and interpersonal relationships.
- Problem solving by integrating complex, sometimes incomplete, sources of information in new and unfamiliar contexts.
- Demonstration of experience in operational interactions for change management in a complex context.
- Manifestation of an active behavior towards a series of social, scientific and ethical aspects that appear in work or study.

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Ad	lvan	ced control of unco	nven	tional processes	
2.2 Holder of the subject			Pro	of. P	hD eng.Mihail Abrud	lean		
2.3 Holder of the academic laboratory		Pro	of. P	hD eng. Mihail Abru	dean			
2.4 Year of study	Ι	2.5 Semest	er	1	2.6 Type of the evaluation	Ex	2.7 Subject regime	THD

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	2	of which: 3.2	1	3.3 academic	1
		course		laboratory/project	
3.4 Total of hours from the curriculum	28	Of which: 3.5	14	3.6 academic	14
		course		laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes				36	
Supplementary documentation using the library, on field-related electronic platforms and in field-related places			10		
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			28		
Tutorials					
Examinations			9		
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	108
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

1 1 1 1 1 1 1 1 1 1	- Tr
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

6. Specific skills acquired	
seminary/laboratory/project	the discipline
the academic	- The frequency at laboratory hours below 70% leads to the restoration of
5.2.for the development of	- The laboratory can be carried out face to face or online
the course	- The course can be held face to face or online
5.1. for the development of	- Attendance at least 50% of the courses

i i	C2 Design of control structures, distributed control systems, intelligent process control methods, hybrid control systems, competencies regarding advanced control of unconventional processes
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

TO THE OBJECTION	of the discipline (resulting from the grid of the specific competences acquired)				
7.1 The general objective of the subject	The discipline has as objective the familiarization of the students from the master's specialization Advanced Control Systems, with the advanced control of unconventional processes and their automatic control methods.				
7.2 Specific	The course aims to present the theoretical elements of the technique of:				
objectives	Automatic control of processes in a nuclear reactor,				
	Unconventional processes for laser processing, plasma, electron beam,				
	• Automatic control structures for low temperature distillation columns a (70K).				
	The laboratory provides the necessary knowledge to the students to be able to know and				
	operate with unconventional processes (nuclear reactors, lasers, separation plants,				
	electron beam cannons, etc.)				

8. Contents*

o. Contents		T
8.1 Course	Teaching methods	No. of hours/
Advanced process control in the nuclear power plant Control structures of nuclear reactors;	Free exposure, with the presentation of the course with video projector, on the board or online	Observations 4h
2. Control of heavy water separation processesControl structures for biterm type separation columns (waterhydrogen sulphide, distillation).	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 3. Control of separation processes at low temperatures (70K) - Modeling of separation processes; - Block diagram of the rectification column; - Control systems of distillation columns at low temperatures (NO distillation at -154°C, CO distillation at -192°C). 	Free exposure, with the presentation of the course with video projector, on the board or online	2h
4. Advanced methods of nuclear fuel production - Fluidized bed reactor control structures for producing uranium hexafluoride.	Free exposure, with the presentation of the course with video projector, on the board or online	2h

5. Control of laser processing processes: - Pulse laser control with a repetition rate of 1-100Hz, type TEA with CO ₂ , N ₂ , He, 500 W,25Mw/impulse;	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 6. Control of plasma processing processes, electron beam Jet or plasma arc generators; Electron beam cannon control and adjustment system (vacuum adjustment, magnetic focusing, magnetic deflection, beam trajectory control, welding control, machining area visualization). 	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Mureşan V, Abrudean M, *Conducerea proceselor industriale*, Editura Galaxia Gutenberg, Cluj-Napoca 2017, 181 pagini, ISBN 978-973-141-699-1.
- 2. D. Axente, M. Abrudean, A. Bâldea, *Separarea Izotopilor Stabili prin Schimb Izotopic*, Ed. Casa Cărții de Știință, 1994.
- 3. J. Lowe, *Process automation Handbook A Guide to Theory and Practice*, Springer-Verlag, London Limited, 2007.
- 4. M. Abrudean, Teoria Sistemelor și Automatizări, Ed. Mediamira, 1998
- 5. M. Dulău, Automatizarea Proceselor Neconvenționale, Ed. Univ. Petru Maior, Tîrgu Mureș, 2005.
- 6. M. Leca, Automatizarea Centralelor Nuclearo-Electrice, Ed. Tehnică, 1984.
- 7. T. Coloşi, M. Abrudean, M.-L. Ungureşan, V. Mureşan, *Numerical Simulation Method for Distributed Parameters Processes using the Matrix with Partial Derivatives of the State Vector*, Ed. Springer, 2013, pg. 343.

8.2 Academic laboratory/project	Teaching methods	No. of
		hours/
		Observations
1. Control structures of the nuclear fuel plant.	Presentation of experimental and	2 h
2. Advanced temperature control structures (-192°C), pressure, boiler level, CO flows from the ¹³ C separation plant by CO distillation.	productive plants, operating regimes and regulation structures.	4 h
3. Advanced structures for controlling the ¹⁵ N productive plant by isotopic exchange.	Presentation of analysis laboratories by mass spectrometry and	4 h
4. Laser control structures TEA with CO2, N2, He 1- 100 Hz, 25 M W/impulse.	chromatography.	4 h

Bibliography

- 1. M. Abrudean, *Teoria Sistemelor și Automatizări*, Ed. Mediamira, 1998.
- 2. M. Dulău, Automatizarea Proceselor Neconvenționale, Ed. Univ. Petru Maior, Tîrgu Mures, 2005.
- 3. Vlad Mureşan, *Conducerea proceselor industriale Îndrumător de laborator*, Editura U.T. PRESS, Cluj-Napoca 2011, ISBN 978-973-662-663-0, 134 pag.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Advanced Control Systems and from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, "Politehnica" University Bucharest, Technical University Gh. Asachi, University Iasi, etc.)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	online Oral (online) examination Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory/project	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Course: Knowledge of advanced control structures for nuclear reactors, distillation plants, high power lasers, electron beam cannons, plasma welding

Laboratory/project: Mathematical models, advanced control structures (cascade, IMC, etc.) for the unconventional processes studied.

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board:

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the sul	oject	Data 1	Protection and Monite	oring		
2.2 Holder of the su	ıbject	Prof.d	r.habil.eng. Daniela El	ena Po	opescu	
2.3 Holder of the ac seminar/laboratory/		Prof.d	r.habil.eng. Daniela El	ena Po	opescu	
2.4 Year of study	2.5 Semesto	er	2.6 Type of the	Ex	2.7 Subject regime	DS
I	1		evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	1/1
		course		seminar/laboratory/project	
3.4 Total of hours from the	56	Of which: 3.5	28	3.6 academic	14/14
curriculum		course		seminar/laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in field-				8	
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				14	
Tutorials				2	
Examinations 4				4	
Other activities.					

3.7 Total of hours for	56
individual study	
3.9 Total of hours per semester	112
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	Operating Systems
4.2 related to skills	Computer Systems Architecture

5. Conditions (where applicable)

er conditions (where appreads	-
5.1. for the development of	- The course can be held face to face or online "
the course	- attendance at least 50% of the courses
5.2.for the development of	- The seminar / laboratory / project can be held face to face or online
the academic	- Mandatory presence at all laboratories;
seminary/laboratory/project	- Students must have completed the theoretical part of the paper;
	- A maximum of 4 works can be recovered during the semester (30%);
	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline
6. Specific skills acquired	

	CP3. Problem solving using Computer Science and engineering tools
Professional skills	CP5. Design, life cycle management, integration and integrity of hardware, software and communications systems in order to increase the security of systems
rsal skills	CT1. Applying, in the context of compliance with the law, intellectual property rights (including technology transfer), product certification methodology, principles, norms and values of the code of professional ethics within its own rigorous, efficient and responsible work strategy • Defining the basic managerial concepts necessary to implement a high security operating environment at the level of organizations • Scientific substantiation of management decisions regarding the preservation and increase of process security as well as the implementation and monitoring of their effects within the organization CT2. Identify roles and responsibilities in a multi-specialized team decision-making and assigning tasks, with the application of relationship techniques and efficient work within the team
Transversal skills	 Assuming the specific roles and responsibilities of leading teams engaged in development activities for high security infrastructures / systems Increasing the interest for the correct realization of a scientific research and for the pursuit of a career in research.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The general objective of the subject	Familiarizing students with the defining elements for implementing and increasing the level of information security at the organizational level as well as identifying healthy strategies for institutional development in this regard
7.2 Specific objectives	 The course aims to familiarize students with information security issues, with understanding and identifying what vulnerabilities are, with how the issue of protection of both the unconnected system and those connected in an internal network / Internet. Therefore, it proposes to present the basic characteristics of information security issues and to develop the capacities to develop security policies at organizational level in order to protect data. Project: Follow-up of the risks and vulnerabilities to which the structures of an institution are exposed, considered as a case study with identification of the protection measures that are required

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Information processing security, protection of	Free course presentation	28 ore
values, Characteristics of computer intrusion,	with video projector /	
Attacks, Significance of computer security, Security	overhead projector and	
purposes, Privacy, Integrity, Availability,	blackboard in an	
Vulnerabilities - hardware, software, Data	interactive way: punctuate	
vulnerabilities, Computer offenders, Methods	from time to time questions	
Defense, Controls, The Future in the Field	for students in order to	
2. Protection of non-networked computers, User	increase the degree of	
authentication, Password systems, Advantages of	interactivity	
password systems, Disadvantage, Rules to increase	 Indication of topics for 	
the security provided by the password system,	documentation and	
Encryption protection, Authentication based on	individual study	
encrypted keys, Authentication based on what the		
user is, Biometric authentication systems, Use of		
fingerprints in authentication		
1. Access control: • Identification • Authentication		

Three factors • Single login • Single conviction • Access control with subjects and objects • Access control mode (DAC, non-DAC, MAC and RBAC) • Bell-LaPadula, Biba, Clark -Wilson, and Chinese Wall architecture • Identity management • Cloud computing 2. Advanced communication and network elements: Open Systems Interconnection (OSI) and Transmission Control Protocol / Internet Protocol (TCP / IP) models • Bus, star and token ring network configurations • Common protocols in TCP / IP suite • Ports used with common protocols • Different network architectures such as Internet, intranet, and extranet • Demilitarized zones (DMZ) • Wireless security protocols such as Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA) and WPA2 • Wireless technologies such as Bluetooth, RFID, 802.11, WiMax, GSM, 3G and NFC 3. Communication and network elements: • Telecommunication methods used to access the Internet • Securing the Voice over Internet Protocol (VoIP) with Secure Real-Time • Transport Protocol (SRTP) • Filtering packets, firewalls and firewalls application • Protects diversity with firewalls • Differentiates between network and host based firewalls • Risks and vulnerabilities related to remote access solutions • Different tunneling protocols using remote access • Authentication methods using remote access · Control network access 4. Differences between hackers and crackers • Differences between whitehats, blackhats, and grayhats • Denial-of-service and distributed denialofservice attacks • Zero-day exploits • Threats Advanced Persistence • Social Engineering Tactics • The Importance of Tools to Reduce Social **Engineering Attacks** 5. Code and Malware: Different types of viruses • Differences between viruses, worms, Trojans and logic bombs • Sets of roots, hatches, back doors and spyware • Differences between signature-based detection and heuristic-based detection • for antivirus software • The importance of keeping antivirus signature definitions up to date • Using spam filters and content filtering devices • The principle of least privilege and how it can help prevent infections • Educating users about practices 6. Malicious code and activity: • Different types of viruses • Differences between viruses, worms, Trojans and logic bombs • Root sets, hatches, backdoors and spyware • Differences between signature-based detection and detection-based of antivirus heuristics • The importance of keeping antivirus signature definitions up to date • Using spam filters and content filtering devices • The least privilege principle and how it can help prevent infections • Educating users about safe computer practices • Common vulnerabilities and exposures 7. Risk, responses and recovery: • Definition of risk, threats, vulnerabilities and impact • Four main methods of risk management: mitigation (mitigation), avoidance, transfer and acceptance • Definition of residual risk • Steps used in risk assessment • Differences between analyzes quantitative and

qualitative • Steps in response to the incident:	
preparation, detection, analysis, retention,	
eradication, • recovery and post-incident activities	
8. Monitoring and analysis: • Security alert and false	
positive • Network-based and host-based intrusion	
detection systems • Intrusion prevention systems •	
Method of detection and prevention of attacks • File	
integration verifiers • Honeypots, plas honeycomb	
and lined cells • Event And Incident Managers, such	
as SIMs, System Event Managers (SEMs) and SIEMs	
• Types of vulnerability assessment tests • Tools	

- Course notes (slides) made available to students in electronic format on the Office 365 platform
- Deborah Russel and. mul 1 CISCOmaterialului course comprin in Mprotection that se impuncareamilor specific search IA general notions legaG.T. Gangemi Sr, Computer security basics, Editura O'Reilly & Assoc, ISBN: 0-
- 937175-71-4, 1993
- Stallings W, Cryptography and Network Security Principles and Practice, Thhird Edition, Prentice Hall, 2003,
- K.Hwang, F.A.Briggs, Computer Architecture and Parallel processing, Mc Graw Hill Book company 1987
- Artech House, Fundamentals of Network Security, Artech House
- D.E.Popescu, Information Security Management, University of Oradea Publishing House, 2012
- **ITIL**

8.2 Project	Teaching methods	No. of hours/ Observations
1. Presentation of project activities, the laboratory, labor protection norms and conventional signs specific to the field of computer systems - general, general information on Protection and data monitoring. Presentation of the required design specifications 2. Analysis of existing vulnerabilities for the case study considered 3. Analysis of the existing risks for the case study considered 4. Classification of the information with the establishment of the security policies for the considered case 5. Identifying the solutions for increasing the security with establishing the concrete security policies for the considered case 6. Tracing the audit techniques for maintaining the security at the level of the analyzed objective 7. Teaching the project with knowledge verification	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out the practical part of the work under the guidance of the teacher.	 4 hours are allocated for each of the 7 detailed points of the laboratory activity. The results of the project activities are presented in plenary at group level

Bibliography

- 1. D.E.Popescu, Information Security Management, University of Oradea Publishing House, 2012
- Moodle module with project works
- Webography recommended during project hours

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline is found in the curriculum of Computer and Information Technology specializations and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.), and knowledge of the architecture and organization of computer systems as well as their operation and design is a stringent requirement of employers in the field (Rds & Rcs, Plexus, Neologic, Celestica, Keysys, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5) in accordance with the minimum performance standard: - it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: - for grade 10, a thorough knowledge of all is required	The evaluation can be done face to face or online depending on the situation imposed	70%
10.6 Laboratory	- for mark 5 it is necessary to solve the corresponding number of requirements, depending on the test scale. - for mark 10, all requirements on the test sheet must be correctly resolved.	Tests during the semester The evaluation of students is done through two tests, taken during the semester. The arithmetic mean of the marks of these tests represents the mark with which they enter the exam. Students can also get extra points, depending on their participation in the laboratory and solving exercises with a higher degree of difficulty. These points can be used to calculate the test score.	30%

10.8 Minimum performance standard:

Assimilation of detailed knowledge about vulnerabilities, risks and security solutions in managing and conveying information in a company

The timely solution, in individual activities and activities carried out in groups, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology. Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

• Development of team spirit, spirit of mutual help, awareness of the importance of training during the semester for good and sustainable results, awareness of the importance of research, own research related to learning (library, internet), cultivating a work discipline, done correctly and time

Completion date:

02.09.2024

Date of endorsement in the department:

09.09.2024

Date of endorsement in the Faculty Board: