1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Systems Engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject Industrial networks							
2.2 Holder of the subject Assoc. prof. GERGELY Eugen-Ioan							
2.3 Holder of the academic seminar/laboratory/project			Asso	oc. prof. GERGEI	LY Eugen-Ioan		
2.4 Year of study	1	2.5 Semester	2	2.6 Type of the evaluation	Examination	2.7 Subject regime	Thoroughgoing Discipline

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	-/2/-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	-/28/-
		course		seminar/laboratory/project	
Distribution of time					69 hours
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in field-related places					13
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					21
Tutorials					7
Examinations					2
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

10 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1	- ·············
4.1 related to the	(Conditions) -
curriculum	
4.2 related to skills	-

5.1. for the development of	- The course room has to be provided with a video-projector
the course	- The course can be carried out face to face or online
5.2.for the development of	- The laboratory facility has to be provided with the necessary equipments
the academic	- Students presence to all laboratory/project hours is compulsory
seminary/laboratory/project	- Students must have summarized the current laboratory work
	- Maximum 4 laboratory works (30%) can be recovered during the

		semester - A participation below 70% at the laboratory works / project leads to the restoration of the subject - The laboratory hours can be carried out face to face or online		
6. Spec	ific skills acquired			
	C1. Knowing the main types of economic processes and phenomena of communication, elements of microeconomic theory and practical aspects of financial and economic flows at business			
	CT2. Identify the roles and work and relational technic	d responsibilities of each member of a pluri-disciplinary team and apply efficient ques inside the team		

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	■ The subject provides knowledge about the actual practices used for the design,
general	installation, commissioning and troubleshooting of the industrial communication
objective of	networks. The presented notions do not intend to make a ranking of the existing
the subject	networks from the point of view of their performances. The main goal is to provide the
	necessary data for choosing the most adequate standards and technologies for a given
	application. The laboratory works are based on SIMATIC S7-300 PLCs and contain
	applications based on PROFIBUS DP.
7.2 Specific	■ To create skills for being able to analize, design, implement and maintain industrial
objectives	communication networks.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introductory aspects	face to face or	2 hours
	online	
	interactive	
	presentation	
2. Network topologies. The ISO/OSI model	face to face or	4 hours
	online	
	interactive	
	presentation	
3. Communication media	face to face or	6 hours
	online	
	interactive	
	presentation	
4. The standards RS-232 and RS-485	face to face or	2 hours
	online	
	interactive	
	presentation	
5. The TCP/IP protocol. The Modbus protocol	face to face or	2 hours
	online	
	interactive	
	presentation	
6. The Industrial Ethernet protocol	face to face or	2 hours
	online	
	interactive	
	presentation	
7. The AS-i interface. The DeviceNet interface	face to face or	2 hours
	online	
	interactive	

	presentation	
8. The Profibus PA/DP/FMS interface. The Foundation Fieldbus interface	face to face or	2 hours
	online	
	interactive	
	presentation	
9. The Modbus Plus protocol. The Data Highway Plus protocol. The Hart	face to face or	2 hours
protocol	online	
	interactive	
	presentation	
10. Wireless technologies	face to face or	4 hours
	online	
	interactive	
	presentation	

- 1. E. Gergely, Helga Silaghi, V. Spoială, L. Coroiu, Z. Nagy, Automate programabile. Operare, programare, aplicații, Editura Universității din Oradea, Oradea, ISBN 978-973-759-940-7, 2009.
- 2. L. M. Thompson, Industrial Data Communications, 4th Edition, ISA, 2007.
- 3. D. Reynders, S. Mackay, E. Wright, Practical Industrial Data Communications: Best Practice Techniques, Elsevier, 2005

Elsevier, 2005		
8.2 Laboratory	Teaching	No. of hours/
	methods	Observations
1. Labor protection. Presentation of laboratory works.	Laboratory work summary and practical demonstrations using specific equipments	2 hours
2. Presentation of the use of S7-300 for PROFIBUS communication.	Laboratory work summary and practical demonstrations using specific equipments	2 hours
3. Addressing methods.	Laboratory work summary and practical demonstrations using specific equipments	2 hours
4. Working with GSD files	Laboratory work summary and practical demonstrations using specific equipments	2 hours
5. Working with the organizational blocks OB82, OB86 and OB122	Laboratory work summary and practical demonstrations using specific equipments	2 hours
6. Configuring remote I/Os for PROFIBUS	Laboratory work summary and practical demonstrations using specific equipments	2 hours
7. Troubleshooting the communication	Laboratory work summary and practical	2 hours

	demonstrations	
	using specific	
	equipments	
8. Using the FC125 function for programming diagnostic functions	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific equipments	
9. Using the Sync/Freeze commands	Laboratory work	2 hours
9. Oshig the Sync/Preeze commands	summary and	2 nours
	practical	
	demonstrations	
	using specific	
	equipments	
10. Deactivating I/O devices	Laboratory work	2 hours
	summary and	
	practical	
	demonstrations	
	using specific	
44 D. C. d. C. d. d. d.	equipments	2.1
11. Reading the diagnostic data from a slave station	Laboratory work	2 hours
	summary and practical	
	demonstrations	
	using specific	
	equipments	
12. Using a CPU as slave	Laboratory work	4 hours
	summary and	
	practical	
	demonstrations	
	using specific	
12 Completion of the Lebenderic situation	equipments	2 hours
13. Completion of the laboratories situation	Laboratory work summary and	2 nours
	practical	
	demonstrations	
	using specific	
	equipments	
Diblio amambro		

- 1. Gergely E., Rețele industriale, Lucrări de laborator.
- 2. http://support.automation.siemens.com.
- 3. xxx SIMATIC NET, PROFIBUS Networks, User Manual, SIEMENS, 2004
- 4. xxx Introduction To ProfiBus DP, Tehnical Reference, ACROMAG INCORPORATED, USA, 2004
- 5. xxx PROFIBUS, Technology and Application, PROFIBUS Competence Centers, 2005

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the subject is in accordance with the one in other national or international universities. In order to provide a better accommodation to the labour market requirements, there have been organized meetings both with representatives of the socio-economic environment and with academic staff with similar professional interest fields.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be made face to face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing	Written examination	66,66 %

	the exam (mark 5): in		
	accordance with the		
	minimum performance		
	standard		
	- For mark 10:		
	- thorough knowledge		
	regarding the network		
	topologies and the ISO/OSI model		
	- thorough knowledge		
	regarding the serial and		
	parallel communication		
	standards		
	- thorough knowledge		
	regarding the industrial		
	standards and wireless		
	communication		
	- thorough knowledge		
	regarding the safety and		
	security in industrial		
	networks		
	- thorough knowledge		
	regarding the design		
	techniques for industrial		
	networks		
10.6 Laboratory	Minimum required	Knowledge assessment	33,33 %
	conditions for promotion	test	
	(grade 5): in accordance		
	with the minimum		
	performance standard		
	- For mark 10:		
	- thorough knowledge		
	regarding the S7-300		
	PLC		
	- thorough knowledge		
	regarding the		
	communication through		
	PROFIBUS		
	- thorough knowledge		
	regarding the master-		
	slave communication		

10.8 Minimum performance standard:

Course:

- knowledge regarding the network topologies and the ISO/OSI model
- knowledge regarding the serial and parallel communication standards
- knowledge regarding the industrial standards and wireless communication
- knowledge regarding the safety and security in industrial networksknowledge regarding the design techniques for industrial networks Laboratory:
- knowledge regarding the S7-300 PLC
- knowledge regarding the communication through PROFIBUS
- knowledge regarding the master-slave communication

Completion date:

07.09.2020

Date of endorsement in the department: 24.09.2020

Date of endorsement in the Faculty Board: 28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the su	bject	_	Advanced control of unconventional processes					
2.2 Holder of the subject			Pro	of. P	hD eng.Mihail Abrud	lean		
2.3 Holder of the academic		Pro	Prof. PhD eng. Mihail Abrudean					
laboratory								
2.4 Year of study I 2.5 Semest		er	1	2.6 Type of the	Ex	2.7 Subject regime	THD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	2	of which: 3.2	1	3.3 academic	1
•		course		laboratory/project	
3.4 Total of hours from the curriculum	28	Of which: 3.5	14	3.6 academic	14
		course		laboratory/project	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					28
Tutorials					
Examinations					9
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	108
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

11	- · · · · · · · · · · · · · · · · · · ·
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The laboratory can be carried out face to face or online
the academic	- The frequency at laboratory hours below 70% leads to the restoration of
seminary/laboratory/project	the discipline
6. Specific skills acquired	

Professional skills	C2 Design of control structures, distributed control systems, intelligent process control methods, hybrid control systems, competencies regarding advanced control of unconventional processes
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

J						
7.1 The general objective of the subject	• The discipline has as objective the familiarization of the students from the master's specialization Advanced Control Systems, with the advanced control of unconventional processes and their automatic control methods.					
7.2 Specific objectives	The course aims to present the theoretical elements of the technique of: • Automatic control of processes in a nuclear reactor,					
objectives	*					
	Unconventional processes for laser processing, plasma, electron beam,					
	• Automatic control structures for low temperature distillation columns a (70K).					
	The laboratory provides the necessary knowledge to the students to be able to know and					
	operate with unconventional processes (nuclear reactors, lasers, separation plants,					
	electron beam cannons, etc.)					

8. Contents*

o. Contents		
8.1 Course	Teaching methods	No. of
		hours/
		Observations
Advanced process control in the nuclear power plant Control structures of nuclear reactors;	Free exposure, with the presentation of the course with video projector, on the board or online	4h
2. Control of heavy water separation processesControl structures for biterm type separation columns (water-hydrogen sulphide, distillation).	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 3. Control of separation processes at low temperatures (70K) Modeling of separation processes; Block diagram of the rectification column; Control systems of distillation columns at low temperatures (NO distillation at -154°C, CO distillation at -192°C). 	Free exposure, with the presentation of the course with video projector, on the board or online	2h
4. Advanced methods of nuclear fuel production - Fluidized bed reactor control structures for producing uranium hexafluoride.	Free exposure, with the presentation of the course with video projector, on the board or online	2h

5. Control of laser processing processes: - Pulse laser control with a repetition rate of 1-100Hz, type TEA with CO ₂ , N ₂ , He, 500 W,25Mw/impulse;	Free exposure, with the presentation of the course with video projector, on the board or online	2h
 6. Control of plasma processing processes, electron beam Jet or plasma arc generators; Electron beam cannon control and adjustment system (vacuum adjustment, magnetic focusing, magnetic deflection, beam trajectory control, welding control, machining area visualization). 	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Mure an V, Abrudean M, *Conducerea proceselor industriale*, Editura Galaxia Gutenberg, Cluj-Napoca 2017, 181 pagini, ISBN 978-973-141-699-1.
- 2. D. Axente, M. Abrudean, A. Bâldea, *Separarea Izotopilor Stabili prin Schimb Izotopic*, Ed. Casa C r ii de tiin , 1994.
- 3. J. Lowe, *Process automation Handbook A Guide to Theory and Practice*, Springer-Verlag, London Limited, 2007.
- 4. M. Abrudean, Teoria Sistemelor i Automatiz ri, Ed. Mediamira, 1998
- 5. M. Dul u, Automatizarea Proceselor Neconven ionale, Ed. Univ. Petru Maior, Tîrgu Mure, 2005.
- 6. M. Leca, Automatizarea Centralelor Nuclearo-Electrice, Ed. Tehnic , 1984.
- 7. T. Colo i, M. Abrudean, M.-L. Ungure an, V. Mure an, *Numerical Simulation Method for Distributed Parameters Processes using the Matrix with Partial Derivatives of the State Vector*, Ed. Springer, 2013, pg. 343.

8.2 Academic laboratory/project	Teaching methods	No. of
		hours/
		Observations
1. Control structures of the nuclear fuel plant.	Presentation of experimental and	2 h
2. Advanced temperature control structures (-192°C), pressure, boiler level, CO flows from the ¹³ C separation plant by CO distillation.	productive plants, operating regimes and regulation structures.	4 h
3. Advanced structures for controlling the ¹⁵ N productive plant by isotopic exchange.	Presentation of analysis laboratories by mass spectrometry and	4 h
4. Laser control structures TEA with CO2, N2, He 1- 100 Hz, 25 M W/impulse.	chromatography.	4 h

Bibliography

- 1. M. Abrudean, Teoria Sistemelor i Automatiz ri, Ed. Mediamira, 1998.
- 2. M. Dul u, Automatizarea Proceselor Neconven ionale, Ed. Univ. Petru Maior, Tîrgu Mures, 2005.
- 3. Vlad Mure an, *Conducerea proceselor industriale Îndrum tor de laborator*, Editura U.T. PRESS, Cluj-Napoca 2011, ISBN 978-973-662-663-0, 134 pag.

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Advanced Control Systems and from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, "Politehnica" University Bucharest, Technical University Gh. Asachi, University Iasi, etc.)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral (online) examination Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory/project	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Course: Knowledge of advanced control structures for nuclear reactors, distillation plants, high power lasers, electron beam cannons, plasma welding

Laboratory/project: Mathematical models, advanced control structures (cascade, IMC, etc.) for the unconventional processes studied.

Completion date:

04.09.2020

<u>Date of endorsement in the department:</u>

24.09.2020

Date of endorsement in the Faculty

Board:

28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Advanced electrical drives					
2.2 Holder of the subject			Prof. PhD eng. Helga Silaghi					
2.3 Holder of the a	cader	emic Prof. PhD eng. Helga Silaghi						
laboratory								
2.4 Year of study	Ι	2.5 Semeste	er	1	2.6 Type of the	Ex	2.7 Subject regime	THD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic laboratory	1
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic laboratory	14
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places				_	
Preparing academic seminaries/laborator	ries/ th	emes/ reports/ por	rtfolios	s and essays	28
Tutorials					
Examinations					9
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

11 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rr
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The laboratory can be carried out face to face or online
the academic	- The frequency at laboratory hours below 70% leads to the restoration of
seminary/laboratory/project	the discipline

6. Spec	rific skills acquired
Professional skills	C4. Setting up and implementing control systems related to electrical drives, advanced electrical drives
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

it in objectives	of the discipline (resulting from the grid of the specific competences dequired)
7.1 The general objective of the subject	• The discipline has as objective the familiarization of the students from the master's specialization Advanced Control Systems, with the field of advanced electric drives.
7.2 Specific objectives	 The course aims to present the theoretical elements of the technique of of advanced electric drives. The laboratory provides the necessary knowledge to the students to be able to know and operate an advanced electric drive

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Advanced electric drives with DC servomotors	Free exposure, with the	4h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure, with the	
2. Advanced electric drives with asynchronous servomotors		4h
	presentation of the course with	
	video projector,	
	on the board or	
	online	
	omme	
	Free exposure,	
3. Advanced electric drives with synchronous servomotors	with the	4h
b. Havaneed electric drives with synchronous servomotors	presentation of	411
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
4. Advanced electric drives with stepper motors	with the	6h
**	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	

5. Variable frequency induction machine control systems	Free exposure, with the presentation of the course with video projector, on the board or online	6h
6. Advanced electric drives with linear motors	Free exposure, with the presentation of the course with video projector, on the board or online	4h

- 1. SILAGHI H., SPOIAL V., SILAGHI M. Ac ion ri electrice, Editura Mediamira, Oradea, 2009
- 2. SILAGHI, H., SPOIAL , VIORICA, Ac ion ri electrice-probleme fundamentale i no iuni de proiectare, Ed. Universit ii din Oradea, 2002
- 3. SILAGHI H., SILAGHI M. Sisteme de ac ion ri electrice cu ma ini asincrone, Editura Treira, Oradea, 2000
- 4. IANCU V., SPOIAL D., SPOIAL VIORICA, Ma ini electrice i sisteme de ac ion ri electrice, vol.II, Ed. Universit ii din Oradea, 2006
- 5. RICHARD CROWDER, Electric drives and electromechanical systems, Elsevier, Great Britain, 2006
- 6. VIORICA SPOIAL, HELGA SILAGHI, Ac ion ri electrice speciale, Editura Universit ii din Oradea, 2010
- 7. HELGA SILAGHI, V. SPOIALA, D.SPOIALA, A. SILAGHI *Ac ion ri electrice avansate*, Editura Universit ii din Oradea, Oradea, ISBN 978-606-10-2035-5, 157 pg., 2019

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
 Presentation of the laboratory, of the labor protection norms and of the conventional signs specific to the field of electric drives. Control of the main shaft to the machine tool GPR 45 NC. Speed selection Control of advances to the GPR 45 NC machine tool Control the revolver head on the GPR 45 NC machine tool Microcontroller control of direct current servomotors Microcontroller control of stepper motors Closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, and carry out the practical part of the work under the guidance of the teacher.	2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h

Bibliography

- 1. Silaghi Helga, Spoial Viorica, *Proiectarea ac ion rilor electrice*, Îndrum tor de proiectare, Editura Universit ii din Oradea, 2009
- 2.Helga Silaghi, V. Spoiala, D.Spoiala, A. Silaghi *Ac ion ri electrice avansate*, Editura Universit ii din Oradea, Oradea, ISBN 978-606-10-2035-5, 157 pg., 2019
- 3. Viorica Spoial , Helga Silaghi, Drago Spoial *Ac ion ri electrice*. Indrumator de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Edi ie CD-ROM, 140 pag, 2014
- 4. Helga Silaghi, Viorica Spoial , Claudiu Costea, *Ac ion ri electrice* îndrum tor de laborator, Editura Universit ii din Oradea, 126 pg, 2008

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Advanced Control Systems and from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral examination Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Course: Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory: Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Completion date:

04.09.2020

Date of endorsement in the department:

24.09.2020

Date of endorsement in the Faculty

Board:

28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the su	bject		Computer vision and image processing					
2.2 Holder of the subject			Lect. PhD eng. Viorica Spoială					
2.3 Holder of the academic			Le	Lect. PhD eng. Viorica Spoială				
laboratory					-			
2.4 Year of study	Ι	2.5 Semeste	ster 2 2.6 Type of the Ex 2.7 Subject regime				THD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in					14
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				20	
Tutorials					
Examinations 9					9
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

I To Toquisitos (Whore	application)
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	Matlab software knowledge

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The laboratory can be carried out face to face or online
the academic	- Matlab software
seminary/laboratory/project	- The frequency at laboratory hours below 70% leads to the restoration of
	the discipline

6. Spec	ific skills acquired
Professional skills	C4. Control systems implementation, software structures for real-time control processes, human-machine interfaces, computer vision, manufacturing automated systems
Transversal skills	TC2. Identify roles and responsibilities in a multi-specialized team, decisions making and assigning tasks, applying relationships techniques and efficient work within the team

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

	or the discipline (resulting from the gree of the specific competences declared)
7.1 The general objective of the subject	 Is the comprehension of the working principle of a computer vision system and the principle of images acquisition and processing.
7.2 Specific objectives	 The course aims to present the digital representation of images, modalities of improving the quality of images, filtering, spectral analysis, morphological transforms, segmentation and compression of images. The laboratory is oriented to image acquisition and processing using <i>Image Acquisition Toolbox</i> and <i>Image Processing Toolbox</i> in Matlab.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
	Free exposure,	21
1. Introduction in computer vision and image processing	with the	2h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
2. Image representation	with the	4h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Eman ayımasıyına	
	Free exposure, with the	
3. Image aspect improvement	presentation of	6h
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
4. Integral transforms of images	with the	(1)
The integral transforms of images	presentation of	6h
	the course with	
	video projector,	
	on the board or	
	online	

	Free exposure,	
5. Image restoration	with the	2h
	presentation of	211
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
6. Mathematical morphology	with the	4h
	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
	with the	
7. Image segmentation and compression	presentation of	4h
	the course with	111
	video projector,	
	on the board or	
	online	
Total		28h
		2011

- 1. Viorica Spoială, Vedere artificială și prelucrarea imaginilor, curs în format electronic, 2021
- 2. Rafael Gonzalez, Richard Woods, Digital Image Processing Third Edition, Pearson Prentice Hall, 2008
- **3**. Cristian Grava, Vasile Buzuloiu, *Elemente de prelucrarea și analiza imaginilor*, Editura Universității din Oradea, 2007

4. Richard Szeliski, Computer Vision: Algorithms and applications, Springer, 2010

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory, of the labor protection norms.		2 h
Matlab software installation.		
2. Webcam app installation and use for real-time image acquisition		2 h
with Matlab		
3. Matlab functions used for image conversion and manipulation		2 h
4. Image representation in Matlab	Students receive	2 h
5. Image aspect improvement in Matlab	laboratory papers	2 h
6. Punctual operators for changing image contrast. Image histogram	at least one week	2 h
in Matlab	in advance, study	
7. Image filtering in Matlab	them, and carry	2 h
8. Fourier transform used for image analysis and processing in	out the practical	4 h
Matlab	part of the work	
9. Frequency response of linear filters used for images in Matlab	under the	2 h
10. Morphological transforms of images in Matlab	guidance of the teacher.	2 h
11. Image segmentation in Matlab	teacher.	2 h
12. Image compression in Matlab		2 h
13. Recoveries and finish of the laboratory.		2 h
TOTAL		28 h

Bibliography

- **1.** Spoială Viorica, *Vedere artificială și prelucrarea imaginilor*, îndrumător de laborator în format electronic, 2021
- **2.**https://ch.mathworks.com/products/image.html

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in other connected curriculum from other universities accredited, for example "Politehnica" University of Timisoara and knowledge of the working mode of computer vision and image processing systems is very important for the employment in any engineering field.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (grade 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required	Oral examination Students receive for solving each a form with subjects of theory from all the courses.	60 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard, the students have to know acquire images and apply simple processing functions on them, without details For 10: detailed knowledge of how to perform all laboratory work	Practical application Each laboratory consists of exercices in Matlab for which students receive a grade. All the grades are averaged and so results the grade for the laboratory.	40%

10.6 Minimum performance standard:

Course:

Description of working principle of digital systems used for acquiring and processing images.

The ability of distinguish color images representation from binary or grayscale representation.

Filtering image methods description and their results.

Mathematical description of morphological transforms for images.

Knowing the principles that are the base for segmentation and compression of images.

Students participation at least a half of courses.

Laboratory:

Abilities to use Matlab functions for image acquisition and image processing (conversions, histogram generation, filtering, spectral analysis with Fourier transform, morphological transforms, segmentation, compression).

Students participation at all the laboratories.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Completion date: 07.09.2020

Date of endorsement in the

department: 24.09.2020

Date of endorsement in the Faculty

Board: 28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the	subjec	et	Ethics and integrity in scientific research					
2.2 Holder of th	e subje	ect	Lect. PhD jr. Anca P CAL					
2.3 Holder of th	der of the academic Lect. PhD jr. Anca P CAL							
seminar/laboratory/project								
2.4 Year of	I	2.5 Semeste	er 2 2.6 Type of the Continuous 2			2.7 Subject regime	SYD	
study					evaluation	Assessment		

3. Total estimated time (hours of didactic activities per semester)

5. Total estimated time (nours or didacti	c activ	ities per semester	,		_
3.1 Number of hours per week	1	of which: 3.2	1	3.3 academic	-
		course		seminar/laboratory/project	
3.4 Total of hours from the curriculum	14	Of which: 3.5	14	3.6 academic	-
		course		seminar/laboratory/project	
Distribution of time					
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					10
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					
Tutorials					
Examinations					
Other activities.					

3.7 Total of hours for individual study	36
3.9 Total of hours per	50
semester	
3.10 Number of credits	2

4. Pre-requisites (where applicable)

11 1 - 1	
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	
the academic	
laboratory/project	

6. Specific skills acquired

CT1. Responsibly apply the principles, norms and values of professional ethics in order to achieve the goals and identify the objectives, the available resources, the steps to be done and time spent for finishing the works, the deadlines, and the risks involved.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	Knowledge, understanding, explanation and interpretation of concepts specific to
general	ethics and integrity in scientific research for their application in the development
objective of	of a responsible professional career.
the subject	
7.2 Specific	The course aims to familiarize students with the notions of ethics, integrity in
objectives	scientific research; acquiring the knowledge and skills necessary to apply the
	rules of ethics in scientific research

8. 8. Contents

8. 8. Contents		
8.1.Course	Teaching methods	No. of hours/ Observations
The concept of ethics; general aspect of the ethics in scientific research. Regulations on ethics in Romanian universities.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
Integrity in the educational system: integrity standards, promotion of academic integrity, violations of academic integrity, good practices.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
Ethical issues of research and publication: plagiarism, forms of plagiarism. Other forms of academic dishonesty.	Free exposure, with the presentation of the course with video projector, on the board or online	4h
Justice and equity in academic organizations and research teams. Legal provisions applicable to the ethics and integrity of scientific research.	Free exposure, with the presentation of the course with video projector, on the board or online	2h
Elaboration of a scientific paper according to the principles of ethics and academic integrity	Free exposure, with the presentation of the course with video projector, on the board or online	2h

- 1. Ariely, D. (2012). *Adev rul (cinstit) despre necinste. Cum îi min im pe to i dar mai ales pe noi în ine.* Bucure ti: Editura Publica
- 2. Proiect PODCA 2013. Ghid practic privind cercetarea stiintifica
- 3. Pisoschi, A., Vacariu V, Ioana Popescu I. 2006. Etica în cercetare,
- 4. Singer, P. (2006), Tratat de Etic , Bucure ti: Editura Polirom
- 5. arpe, D., Popescu, D., Neagu, A., Ciucur, V., (2011), Standarde de integritate în mediul universitar, UEFISCDI, Bucure ti.
- 6. ercan, Emilia, (2017), Deontologie academic . Ghid practic, Editura Universit ții Bucure ti
- 7. L.E.N- 1/2011
- 8. Legea 8/1996 privind drepturile de autor
- 9. Legea 206/2004 privind buna conduit în cercetarea tiin ific , dezvoltarea tehnologic i inovare

8.2 Academic seminar/laboratory/project	Teaching methods	No. of hours/
		Observations

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

Knowledge of these notions is a stringent requirement of vocational training. The content of the discipline is correlated with the need to train responsible adults, able to apply and respect the principles of ethics and integrity in personal and professional life.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Oral examination	100 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	2 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10: thorough		
	knowledge of all subjects		
	is required		
10 (1)	presenting details on them For 10: thorough knowledge of all subjects		

10.6 Minimum performance standard:

Course: - Knowledge of the essential notions in the field of ethics and integrity in scientific research; - Ability to know and recognize the extent of one's rights and obligations as a researcher;

Completion date:

Date of endorsement in the department: 24.09.2020

Date of endorsement in the Faculty

Board: 28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control Systems Engineering
1.5 Study cycle	Master(2 st cycle)
1.6 Study program/Qualification	Advanced Control Systems

2. Datarelated to the subject

2.1 Name of the su	2.1 Name of the subject			Inteligent Process Control Methods				
2.2 Holder of the s	ubject	t	As	. Pro	f. PhD Alexandru Ba	ra		
2.3 Holder of the academic			As	As. Prof. PhD Alexandru Bara				
laboratory/project								
2.4 Year of study V 2.5 Semest		er	8	2.6 Type of the	Ex	2.7 Subject regime	DAP	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic	0/2
_		course		laboratory/project	
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6	0/28
		course		academiclaboratory/proj	
				ect	
Distribution of time					69
Study using the manual, course support, bibliography and handwritten notes					26
Supplementary documentation using the library, on field-related electronic platforms and in					18
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					21
Tutorials				0	
Examinations					4
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites(where applicable)

1 1	· ····· · · · · · · · /
4.1 related to the	- Mathematics
curriculum	- Dynamic Systems Control
4.2 related to skills	Systems Modelling and Simuling, MATLAB environment

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The project can be carried out face to face or online
the academic	
laboratory/project	

6. Speci	ific skills acquired
Professional skills	C2. Design of process control, distributed control systems, process control intelligent methods, hybrid control systems, advanced unconventional process control competences
Transversal skills	TC3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	• The main task of the course consists in applications of artificial intelligence tools
general	to the control of dynamic systems
objective of	
the subject	
7.2 Specific	• The course aims to present the theoretical and practical elements on control of
objectives	dynamic systems.
	 The project familiarizes students with practical aspects of analysis by control systems simulations using MATLAB&SIMULINK.

8. Contents*

8.1 Course	Teaching	No. of hours/
	methods	Observations
1. Introduction into Fuzzy Systems Control	Free exposure,	
1.1. Fuzzy Sets Theory	with the	14h
1.2. Fuzzy Reasoning	presentation of	1 111
1.3 Fuzzy Models	the course with	
1.4 Fuzzy Control	video projector,	
1111 uzzy control	on the board or	
	online	
2. Introduction into neural networks	Free exposure,	
2.1. Artificial neural networks	with the	
2.2.Basic Model of a neuron	presentation of	0.1
2.3 Learning in Artificial Neural Networks	the course with	8 h
2.4 Single and Multilayer Neural Networks	video projector,	
·	on the board or	
	online	
	Free exposure,	
	with the	
3. Introduction into Genetic Algorithms	presentation of	
3.1 Fundamentals of Genetic Algorithms	the course with	6h
3.2 Solving constraint and unconstrained optimization problems	video projector,	
	on the board or	
	online	
Diblio annulus		

Bibliography

- 1. Gurney, et al., An Introducyion to neural networks
- 2. Dorf., C.R, Bishop, H.R. Modern Control Systems, Prentice-Hall, 1997
- 3. Bara, A., Sisteme fuzzy- Aplicatii la conducerea proceselor

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations

1		2h
Bibliography 1		
8.3 Academic project	Teaching methods	No. of hours/ Observations
	•	<u> </u>

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Automatics and Applied Informatics and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	60 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10:thorough		
	knowledge of all subjects		
	is required		
10.5 Laboratory	Minimum required	Test + practical	20%
	conditions for promotion	application	
	(grade 5): in accordance	At each laboratory	
	with the minimum	students receive a test	
	performance standard	and a grade. Each	
	recognition of the stands	student also receives a	
	used to carry out the	grade for laboratory	
	laboratory works,	work during the semester	
	without presenting	and for the laboratory	
	details on them	work file. This results in	
	For 10: detailed	an average for the	
	knowledge of how to	laboratory.	
	perform all laboratory		
	work		
10.6 Project	Minimum required	Oral presentation	20%
	conditions for promotion	Following the	
	(grade 6):going through	presentation of the	
	the design stages,	project completed during	

without deepening the	the semester, each	
calculations	student receives a grade.	
For 10: going through all	-	
the design stages, with		
the completion of the		
calculations and the		
electrical supply and		
control diagrams		

10.6 Minimum performance standard:

Course:Selection and independent use of learned methods and algorithms for known standard situations as well as completion of calculations (analytical and numerical) with physical quantities.

Laboratory:Development and implementation of algorithms and automation structures based on electrical drives, microcontrollers, signal processors, PLCs, embedded systems, etc. by using the principles of project management

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

09.09.2020

Date of endorsement in the department: 24.09.2020

Date of endorsement in the Faculty Board:28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/ Master of Science in Engineering

2. Datarelated to the subject

2.1 Name of the subject			Ma	nuf	acturing automatio	n sys	stems	
2.2 Holder of the subject			Coı	nf. P	hD eng. Tiberiu Bara	abas		
2.3 Holder of the academic		Coı	Conf. PhD eng. Tiberiu Barabas					
laboratory/project								
2.4 Year of study I 2.5 Semest		er	1	2.6 Type of the	Ex	2.7 Subject regime	THD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/-
		course		laboratory/project	
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6	14/-
		course		academiclaboratory/proj	
				ect	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in					17
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					24
Tutorials				2	
Examinations					4
Other activities.					

3.7 Total of hours for		
individual study		
3.9 Total of hours per	125	
semester		
3.10 Number of credits	5	

4. Pre-requisites(where applicable)

11 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works

	 - A maximum of 2 works can be recovered during the semester (30%); - The frequency at laboratory hours below 70% leads to the restoration of the discipline
6. Spec	ic skills acquired
Professional skills	C3. Implementation of control systems, software structure for real-time control applications, human-machine interfaces, artificial vision, automated manufacturing systems.
Transversal skills	CT2. Identify roles and responsibilities in a multi-specializedteam, decisions making and assigning tasks, applying relationshipstechniques and efficient work within the team

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	<u> </u>					
7.1 The	• Fundamentals on the architecture of automated manufacturing systems in the					
general	CIM (Computer Integrated Manufacturing) concept, studying system					
objective of	components and information processing. Familiarity with the specific problems					
the subject	of modeling, simulation and management of automated manufacturing systems.					
7.2 Specific	• The course aims to present the theoretical elements related to the architecture,					
objectives	modeling and simulation of the operation of automatic manufacturing systems.					
	• The laboratory familiarizes students with practical aspects of the management of					
	automated manufacturing systems.					

8. Contents*

o. Contents		
8.1 Course	Teaching	No. of hours/
	methods	Observations
Cap.1.Introduction to automatic manufacturing systems. Cim	Free exposure, with the presentation of	4h
concept. Cap.2. Flexible Manufacturing Systems (FMS). Cap.3. Manufacturing automation structures used in CIM systems. Cap.4. Open architecture control equipments for CIM systems Cap.5.Modelling and simulation of the operation of automatic manufacturing systems. Petri networks.	the course with video projector, on the board or online	6h 6h 6h 6h

Bibliography

- 1. T. Barabas, Structuri deschise de automatizare a fabrica iei din cadrul hipersistemelor CIM robotizate, Editura Universit ii Oradea, 2004;
- 2. Th. Borangiu s.a. Conducerea multiprocesor în timp real a structurilor flexibile de fabricatie Ed.Tehnicã, 1989
- 3. S.C lin s.a. Conducerea adaptiv si flexibil a proceselor industriale, Ed. Tehnicã, 1988
- 4. M. Ganea, T. Barabas, **Sisteme flexibile Robo i i linii flexibile** *Îndrum tor de laborator*, Editura Universit ii Oradea, 2000
- 5. Kovacs, Fr. i col, **Sisteme de fabrica ie flexibil robotizate,** vol. I-II., Universitatea "Politehnic" Timi oara. 1994

Tilli Oara, 1994		
8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations
1. Presentation of the laboratory and of the labor protection norms.	Students receive	2 h
2. The pallet manipulator at the entry point of the Regal storage.	laboratory papers	2 h
3. The Regal storage and the Stacker manipulator.	at least one week	2 h

4. The flow of parts and the control algorithm in CIM.	in advance, study	2 h
5. Management of the Regal storage.	them, inspect	2 h
6. Analysis of the image of the part as a CAQ procedure.	them, and take a	2 h
7. Closing the situation at the laboratory.	theoretical test at	2 h
	the beginning of	
	the laboratory.	
	Then, the	
	students carry out the practical part	
	of the work under	
	the guidance of	
	the teacher	
D'11' 1	•	1

1. M. Ganea, T. Barabas, **Sisteme flexibile - Robo i i linii flexibile** – *Îndrum tor de laborator*, Editura Universit ii Oradea, 2000de laborator. Universitatea din Oradea, ISBN 978-606-10-1432-3, Edi ie CD-ROM, 140 pag, 2014

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is similar to similar subjects taught at the University "Politechnics" Timisoara.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	online Written exam Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Modeling, simulation and use/programming of automatic manufacturing systems.

Completion date: 09.09.2020

Date of endorsement in the

department:

24.09.2020

Date of endorsement in the Faculty

28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/ Master of Science in Engineering

2. Datarelated to the subject

2.1 Name of the su	bject	-	Mobile robots. Software architecture and applications				S	
2.2 Holder of the s	ubjec	t	Conf. PhD eng. Tiberiu Barabas					
2.3 Holder of the a	cader	nic	ic Conf. PhD eng. Tiberiu Barabas					
laboratory/project								
2.4 Year of study	I	2.5 Semeste	er	1	2.6 Type of the	Ex	2.7 Subject regime	THD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	2	3.3 academic	1/-
•		course		laboratory/project	
3.4 Total of hours from the curriculum		Of which: 3.5	28	3.6	14/-
		course		academiclaboratory/proj	
				ect	
Distribution of time					hours
Study using the manual, course support, bibliography and handwritten notes					36
Supplementary documentation using the library, on field-related electronic platforms and in					17
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					24
Tutorials				2	
Examinations					4
Other activities.					

3.7 Total of hours for	83
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites(where applicable)

11 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works

		- A maximum of 2 works can be recovered during the semester (30%); - The frequency at laboratory hours below 70% leads to the restoration of the discipline
6. Spec	ific skills acquired	
Professional skills	*	on of control systems, software structure for real-time control applications, terfaces, artificial vision, automated manufacturing systems.
Transversal skills	•	s and responsibilities in a multi-specializedteam, decisions making and sks, applying relationshipstechniques and efficient work within the team

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	or the table print (resulting from the gire of the specific competences acquired)
7.1 The general objective of the subject	 Fundamentals on the architecture of mobile robots (mechanical system, control system, actuator system), with computer modelling possibilities and with simulation software applications/environments for mobile robots.
7.2 Specific objectives	 The course aims to present the theoretical elements related to the architecture, modeling and simulation of the operation of mobile robots. The lab familiarizes students with simulation software applications/environments for mobile robots.

8. Contents*

8.1 Course	Teaching	No. of hours/
 Introduction. Definitions, history, applications of mobile robots, locomotion of mobile robots. Architecture of the mechanical system. Mobile Robots with Wheels, Tracked Mobile Robots, Walking Robots. The architecture of the driving system. Control systems. Actuator systems. Sensors. Communications. Computer modelling of the movement of mobile robots. Planning the movement of mobile robots in an obstacle environment. Software applications for mobile robots. Simulation software environments. 	Free exposure, with the presentation of the course with video projector, on the board or online	Observations 4h 6h 6h 6h 6h

Bibliography

- 1. Braunl, *Mobile Robot design an Applications with Embedded Systems*, Springer-Verlag Berlin Heidelberg, 2006
- 2. R. Siegwart, I.R. Nourbakhsh, *Introduction to Autonomous Mobile Robots*, The MIT Press, Cambridge, massachusetts, London, England, 2004
- 3. J. Holland, *Designing Autonomous Mobile Robots*, Elsevier Inc., 200 Wheeler Road, Burlington, MA 01803, USA, 2004
- 4. U. Nehmzow, Scientific Methods in Mobile Robotics, Springer-Verlag London Limited, 2006

8.2 Academic laboratory	Teaching	No. of hours/
	methods	Observations

 Presentation of the laboratory and of the labor protection norms. MobotSim Mobile Robot Simulator. EyeSIM Mobile Robot Simulator. MobileSim Mobile Robot Simulator. Marilou Robotics Studio 2008 simulation environment. Microsoft Robotics Studio 1.5 simulation environment. Closing the situation at the laboratory. 	Students receive laboratory papers at least one week in advance, study them, inspect them, and take a theoretical test at the beginning of the laboratory. Then, the students carry out	2 h 2 h 2 h 2 h 2 h 2 h 2 h
---	--	---

1. M. Ganea, T. Barabas, Sisteme flexibile - Robo i i linii flexibile - Îndrum tor de laborator, Editura Universit ii Oradea, 2000

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is similar to similar subjects learned at the University "Politechnics" Timisoara.

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Written exam Students receive for solving each a form with 3 subjects of theory and an application.	70 %
10.5 Laboratory	Minimum required conditions for promotion (grade 5): in accordance with the minimum performance standard recognition of the stands used to carry out the laboratory works, without presenting details on them For 10: detailed knowledge of how to perform all laboratory work	Test + practical application At each laboratory students receive a test and a grade. Each student also receives a grade for laboratory work during the semester and for the laboratory work file. This results in an average for the laboratory.	30%

10.6 Minimum performance standard:

Modeling, simulating and programming mobile robots.

Completion date: 09.09.2020

Date of endorsement in the

department:

24.09.2020

Date of endorsement in the Faculty

Board:

28.09.2020

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject		Data P	rotection and Monitoring			
2.2 Holder of the subject		Prof.	dr.habil.eng. Daniela El	ena Po	opescu	
2.3 Holder of the ac	ademic	Prof.	dr.habil.eng. Daniela El	ena Po	opescu	
seminar/laboratory/	project					
2.4 Year of study	2.5 Semeste	er	2.6 Type of the	Ex	2.7 Subject regime	DS
I	1		evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2 course	2	3.3 academic seminar/laboratory/project	1/1
3.4 Total of hours from the curriculum	56	Of which: 3.5 course	28	3.6 academic seminar/laboratory/project	14/ 14
Distribution of time			hou		
			rs		
Study using the manual, course support, bibliography and handwritten notes					28
Supplementary documentation using the library, on field-related electronic platforms and in field-			8		
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays			14		
Tutorials			2		
Examinations				4	
Other activities.					

3.7 Total of hours for individual	56
study	
3.9 Total of hours per semester	112
3.10 Number of credits	4

4. Pre-requisites (where applicable)

4.1 related to the	(Conditions)
curriculum	Operating Systems
4.2 related to skills	Computer Systems Architecture

5.1. for the development of	- The course can be held face to face or online "
the course	- attendance at least 50% of the courses
5.2.for the development of	- The seminar / laboratory / project can be held face to face or online
the academic	- Mandatory presence at all laboratories;
seminary/laboratory/project	- Students must have completed the theoretical part of the paper;
	- A maximum of 4 works can be recovered during the semester (30%);

		- The frequency at laboratory hours below 70% leads to the restoration of the discipline							
6. Spe	Specific skills acquired								
_	CP3. Problem solving using Computer Science and engineering tools								
	CP5. Design, life cycle ma	anagement, integration and integrity of hardware, software and communications							
Professional skills	systems in order to increase the security of systems								
cills	transfer), product certifica within its own rigorous, et • Defining the basic mana the level of organizations • Scientific substantiation	text of compliance with the law, intellectual property rights (including technology tion methodology, principles, norms and values of the code of professional ethics ficient and responsible work strategy gerial concepts necessary to implement a high security operating environment at of management decisions regarding the preservation and increase of process elementation and monitoring of their effects within the organization							
Transversal skills	with the application of relations of the Assuming the specific rohigh security infrastructure.	sponsibilities in a multi-specialized team decision-making and assigning tasks, ationship techniques and efficient work within the team les and responsibilities of leading teams engaged in development activities for es / systems r the correct realization of a scientific research and for the pursuit of a career in							

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	Familiarizing students with the defining elements for implementing and
general	increasing the level of information security at the organizational level as well as
objective of	identifying healthy strategies for institutional development in this regard
the subject	
7.2 Specific	The course aims to familiarize students with information security issues, with
objectives	understanding and identifying what vulnerabilities are, with how the issue of
	protection of both the unconnected system and those connected in an internal
	network / Internet. Therefore, it proposes to present the basic characteristics of
	information security issues and to develop the capacities to develop security
	policies at organizational level in order to protect data.
	Project: Follow-up of the risks and vulnerabilities to which the structures of an
	institution are exposed, considered as a case study with identification of the
	protection measures that are required

8. Contents*

8.1 Course	Teaching methods	No. of hours/ Observations
1. Information processing security, protection of	Free course presentation	28 ore
values, Characteristics of computer intrusion,	with video projector /	
Attacks, Significance of computer security, Security	overhead projector and	
purposes, Privacy, Integrity, Availability,	blackboard in an	
Vulnerabilities - hardware, software, Data	interactive way: punctuate	
vulnerabilities, Computer offenders, Methods	from time to time questions	
Defense, Controls, The Future in the Field	for students in order to	
2. Protection of non-networked computers, User	increase the degree of	
authentication, Password systems, Advantages of	interactivity	
password systems, Disadvantage, Rules to increase	 Indication of topics for 	
the security provided by the password system,	documentation and	
Encryption protection, Authentication based on	individual study	

encrypted keys, Authentication based on what the user is, Biometric authentication systems, Use of fingerprints in authentication 1. Access control: • Identification • Authentication Three factors • Single login • Single conviction • Access control with subjects and objects • Access control mode (DAC, non-DAC, MAC and RBAC) • Bell-LaPadula, Biba, Clark -Wilson, and Chinese Wall architecture • Identity management • Cloud computing 2. Advanced communication and network elements: Open Systems Interconnection (OSI) and Transmission Control Protocol / Internet Protocol (TCP / IP) models • Bus, star and token ring network configurations • Common protocols in TCP / IP suite • Ports used with common protocols • Different network architectures such as Internet, intranet, and extranet • Demilitarized zones (DMZ) • Wireless security protocols such as Wired Equivalent Privacy (WEP), Wi-Fi Protected Access (WPA) and WPA2 • Wireless technologies such as Bluetooth, RFID, 802.11, WiMax, GSM, 3G and NFC 3. Communication and network elements: • Telecommunication methods used to access the Internet • Securing the Voice over Internet Protocol (VoIP) with Secure Real-Time • Transport Protocol (SRTP) • Filtering packets, firewalls and firewalls application • Protects diversity with firewalls • Differentiates between network and host based firewalls • Risks and vulnerabilities related to remote access solutions • Different tunneling protocols using remote access • Authentication methods using remote access • Control network access 4. Differences between hackers and crackers • Differences between whitehats, blackhats, and grayhats • Denial-of-service and distributed denialofservice attacks • Zero-day exploits • Threats Advanced Persistence • Social Engineering Tactics • The Importance of Tools to Reduce Social **Engineering Attacks** 5. Code and Malware: Different types of viruses • Differences between viruses, worms, Trojans and logic bombs • Sets of roots, hatches, back doors and spyware • Differences between signature-based detection and heuristic-based detection • for antivirus software • The importance of keeping antivirus signature definitions up to date • Using spam filters and content filtering devices • The principle of least privilege and how it can help prevent infections • Educating users about practices 6. Malicious code and activity: • Different types of viruses • Differences between viruses, worms, Trojans and logic bombs • Root sets, hatches, backdoors and spyware • Differences between signature-based detection and detection-based of antivirus heuristics • The importance of keeping antivirus signature definitions up to date • Using spam filters and content filtering devices • The least privilege principle and how it can help prevent infections • Educating users about safe computer practices • Common vulnerabilities and exposures

7. Risk, responses and recovery: • Definition of risk, threats, vulnerabilities and impact • Four main

methods of risk management: mitigation (mitigation),	
avoidance, transfer and acceptance • Definition of	
residual risk • Steps used in risk assessment •	
Differences between analyzes quantitative and	
qualitative • Steps in response to the incident:	
preparation, detection, analysis, retention,	
eradication, • recovery and post-incident activities	
8. Monitoring and analysis: • Security alert and false	
positive • Network-based and host-based intrusion	
detection systems • Intrusion prevention systems •	
Method of detection and prevention of attacks • File	
integration verifiers • Honeypots, plas honeycomb	
and lined cells • Event And Incident Managers, such	
as SIMs, System Event Managers (SEMs) and SIEMs	
• Types of vulnerability assessment tests • Tools	

Bibliography

- Course notes (slides) made available to students in electronic format on the Office 365 platform
- Deborah Russel and. mul 1 CISCOmaterialului course comprin in Mprotection that se impuncareamilor specific search IA general notions legaG.T. Gangemi Sr, Computer security basics, Editura O'Reilly & Assoc, ISBN: 0-
- 937175-71-4, 1993
- Stallings W, Cryptography and Network Security Principles and Practice, Thhird Edition, Prentice Hall, 2003.
- K.Hwang, F.A.Briggs, Computer Architecture and Parallel processing, Mc Graw Hill Book company 1987
- Artech House, Fundamentals of Network Security, Artech House
- D.E.Popescu, Information Security Management, University of Oradea Publishing House, 2012
- ITIL

8.2 Project Teachi	ing methods No. of hours/ Observations
1. Presentation of project activities, the laboratory, labor protection norms and conventional signs specific to the field of computer systems - general, general information on Protection and data inspect monitoring. Presentation of the required design specifications 2. Analysis of existing vulnerabilities for the case study considered 3. Analysis of the existing risks for the case study	 4 hours are allocated for each of the 7 detailed points of the laboratory activity. The results of the project activities are presented in plenary at group level

Bibliography

- 1. D.E.Popescu, Information Security Management, University of Oradea Publishing House, 2012
- 2. Moodle module with project works
- 3. Webography recommended during project hours

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline is found in the curriculum of Computer and Information Technology specializations and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.), and knowledge of the architecture and organization of computer systems as well as their operation and design is a stringent requirement of employers in the field (Rds & Rcs, Plexus, Neologic, Celestica, Keysys, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5) in accordance with the minimum performance standard: - it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: - for grade 10, a thorough knowledge of all is required	The evaluation can be done face to face or online depending on the situation imposed	70%
10.6 Laboratory	 for mark 5 it is necessary to solve the corresponding number of requirements, depending on the test scale. for mark 10, all requirements on the test sheet must be correctly resolved. 	Tests during the semester The evaluation of students is done through two tests, taken during the semester. The arithmetic mean of the marks of these tests represents the mark with which they enter the exam. Students can also get extra points, depending on their participation in the laboratory and solving exercises with a higher degree of difficulty. These points can be used to calculate the test score.	30%

10.8 Minimum performance standard:

Assimilation of detailed knowledge about vulnerabilities, risks and security solutions in managing and conveying information in a company

The timely solution, in individual activities and activities carried out in groups, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology. Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

• Development of team spirit, spirit of mutual help, awareness of the importance of training during the semester for good and sustainable results, awareness of the importance of research, own research related to learning (library, internet), cultivating a work discipline, done correctly and time

Completion date:

20.09.2020

Date of endorsement in the department:

24.09.2020

Date of endorsement in the Faculty

Board: 28.09.2020

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

		- 3						
2.1 Name of the subject			Αυ	ıtom	atic system quality	engin	neering	
2.2 Holder of the subject			Pr	of. P	hD eng. Gabriela Ton			
2.3 Holder of the academic		Pr	Prof. PhD eng. Gabriela Ton					
laboratory/project								
2.4 Year of study	II	2.5 Semest	er	3	2.6 Type of the	Ex	2.7 Subject regime	DS
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic laboratory	28
		course			
Distribution of time					69h
Study using the manual, course support, bibliography and handwritten notes					30
Supplementary documentation using the library, on field-related electronic platforms and in				10	
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays				20	
Tutorials				0	
Examinations				9	
Other activities.					

3.7 Total of hours for	69
individual study	
3.9 Total of hours per	125
semester	
3.10 Number of credits	5

4. Pre-requisites (where applicable)

11 1 1 (·· · · · · · · · · · · · · · · · · ·
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all laboratories;
the academic	- The laboratory/project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);

	- The frequency at laboratory hours below 70% leads to the restoration of the discipline
6. Speci	fic skills acquired
nal skills	C5. Technical and technological design of processes belonging to electric, electronic and energy engineering systems, structures and industry, according to quality requirements.C6. Knowledge of key issues in the field of management and communication in engineering and
Professional	in the area of interference between fields
rsal skills	TC1. Responsibly apply the principles, norms and values of professional ethics in order to achieve the goals and identify the objectives, the available resources, the steps to be done and time spent for finishing the works, the deadlines, and the risks involved.
Transversal	TC2. Identify the roles and responsibilities of each member of a pluri-disciplinary team and apply efficient work and relational techniques inside the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

I III o o o je e e i e e	or the discipline (resulting from the grid of the specific competences and an ed)
7.1 The	Deepening students' knowledge on keeping under control, ensuring and
general	improving quality;
objective of	The main models of quality management systems, focusing on the model offered
the subject	by the ISO 9000 series of standards;
	elements related to the audit and certification of quality management systems
7.2 Specific	
objectives	

8. Contents*

8.1 Course	Teaching methods	No. of
		hours/
		Observations
1. The quality	Free exposure, with	
1. 1. The notion of quality. Definition and meanings	the presentation of	
1. 2. Quality characteristics	the course with video	2 h
1. 3. Quality components	projector, on the	2 11
1. 4. The quality loop. The spiral of quality	board or online	
1.1.1.5. Statistical quality management		
2. Quality assurance	Free exposure, with	
2.1 The concept of total quality	the presentation of	
2.2 Quality system	the course with video	
2.2.1 Main concepts	projector, on the	
2.2.2 The need to implement a quality system	board or online	
2.2.3 Situations in which the quality system is implemented		
2.2.4 ISO standards series 9000: 1994 on quality systems		2 h
2.2.5 Selecting the quality system model		2 11
2.2.6 Quality system documents		
2.2.7 Quality Manual - MQ		
2.2.8 System function procedures - PFS		
2.2.9 Working procedures / instructions-P / I-L		
2.2.10 Quality plans - PC		
2.2.11 Audit plans - PA Quality records - CI		

3. ISO standards series 9000: 2006 3.1 Quality and the year 2006 3.1.1 ISO 9000: 2006 standard 3.1.1.1 Vocabulary 3.1.1.2 Fundamental principles of quality management systems 3.1.2 The ISO 9001: 2006 standard 3.1.2.1 Characteristic features 3.1.2.2 The provisions of the standard 3.1.3 ISO 9004: 2006 standard	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
4. ISO standards series 9000: 2006 4.1 Quality and the year 2006 4.1.1 ISO 9000: 2006 standard 4.1.1.1 Vocabulary 4.1.1.2 Fundamental principles of quality management systems 4.1.2 The ISO 9001: 2006 standard 4.1.2.1 Characteristic features 4.1.2.2 The provisions of the standard 4.1.3 ISO 9004: 2006 standard	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
5. Quality costs5.1 Non-quality costs5.2 Structure of costs related to quality, to the manufacturer5.3 Structure of costs related to quality, to the beneficiary	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
6. Methods, techniques and tools of analysis and evaluation used to improve quality 6.1 Quality index method 6.2 Histogram method 6.3 Pareto Diagram 6.4 Dementia method (penalty for defects) 6.5 Direct comparative method 6.6 Cause-effect diagram	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
7. Benchmarking and its stages 7.1 The notion of benchmarking 7.2 Definitions of benchmarking 7.3 Brief history of benchmarking 7.4 Types of benchmarking 7.5 The benchmarking process 7.5.1 When do we use benchmarking? 7.5.2. Stages of benchmarking	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
8. Evaluation of cognitive enterprise processes, system of quality indicators 8.1 The system of quality indicators 8.2 Development and implementation of the quality indicators system 8.2.1 Systematic data collection 8.2.2 Evaluation and presentation of quality indicators at the appropriate management level 8.2.3 Initiation of interventions in case of unfavorable changes 8.2.4 Implementation of interventions according to the values of the indicators	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
9. The motivational system of quality management activities 9.1 The process of motivation 9.2 Motivational theories 9.2.1 Maslow: The theory of the hierarchy of needs 9.2.2 Herzberg: The two-factor theory 9.3 Process theory of motivation The integrated model of	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

motivation 9.4 Motivation tasks during the implementation and functioning of the quality management system		
10.Certification of quality management systems 10.1 Certification bodies 10.2 Staff certification 10.3 Terminology (according to EN 45000 series standards) 10.4 Areas of certification 10.5 Certification of products or services 10.6 Implications of affixing the CE marking 10.7 Products that require marking	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
11. Features and functions of quality management 11.1 Existence of the quality system 11.2 Integration in the management of the organization 11.3 Principles of quality management		
12. TQM Terminology Total quality Management through total quality	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
13. Excellence 13.1 The notion of excellence 13.2 The road to excellence 13.3 Models of excellence: EFQM, MBNQA etc. 13.4 Six Sigma 13.3 Quality Awards	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
14. Quality where? Integrated management systems 14.1 Other standardized management systems (environment, occupational health and safety, etc.) 14.2 Advantages of integrating management systems 14.3 Ways to achieve an integrated system	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
Bibliography [1]. Panaite, V., Munteanu, R., Control statistic i fiabilitate,	Bucure ti, Ed. Didactic	i Pedagogic ,

- [1]. Panaite, V., Munteanu, R., Control statistic i fiabilitate, Bucure ti, Ed. Didactic i Pedagogic 1982;
 - [2]. C tuneanu V.M., Mihalache A., Bazele fiabilit ii, Bucure ti, Ed. Tehnic , 1983
 - [3]. Gabriela Ton Fiabilitatea sistemelor, Ed. Universit ii din Oradea, 2002;
 - [4]. Panaite, V, Popescu M., Calitatea produselor i fiabilitate, Bucure ti, Matrix Rom, 2003;
 - [5]. Mihoc Gh., Muja A., Diatcu E., Bazele matematicii ale teoriei fiabilit ii, Cluj-Napoca, Ed. Dacia,

1976. Panaite, V., Munteanu, R., Control statistic i fiabilitate, Bucure ti, Ed. Didactic i Pedagogic, 1982.

8.2 Academic laboratory	Teaching methods	No. of
		hours/
		Observations
Laboratory work	Students receive	
1. Descriptive analysis of the quality characteristic	laboratory papers at	2h
2. Variation intervals and stability of the technological	least one week in	4 h
manufacturing process	advance, study them,	
3. Making and interpreting a measurement histogram	inspect them, and	4 h
4. Control by measurement. Completion of the control sheet	take a theoretical test	4 h

5. Attribute control. Completion of the control sheet	at the beginning of	4 h
6. Dimensional control using statistical calculation	the laboratory. Then,	4 h
7. Capability analysis. Maintaining the accuracy of measuring and	the students carry out	4 h
control equipment	the practical part of	2 h
8. Closing the situation at the laboratory	the work under the	
	guidance of the	
	teacher	

Bibliografie

- [1]. Munteanu, R., Rusu, T., Introducere în ingineria calit ii, Editura Mediamira, Cluj-Napoca, 2002.
- [2]. Ton, G., Calitatea în electrotehnic, ISBN 973-613-544-6, Ed. Universit ii din Oradea, 2016;
- [3]. Olaru, M., Mangementul calit ii, Editura Economica, Bucuresti, 1999.
- [4]. B leanu , Cristian Managementul îmbun t irii continue, Editura Expert, Bucure ti, 1996
- [5]. Mitonneau, Henri O nou orientare în managementul calit ii: apte instrumente noi, Editura Tehnic,

Bucure ti, 1998

- [6]. Oprean, C., Managementul calit ii, Editura Univrsit ii "L. Blaga", Sibiu, 2002
- Stanciu, Ion, Managementul calit ii totale, Editura Cartea Universitar, Bucure ti, 2003
- [7]. Popescu, S., s.a., Bazele Managementului Calitatii Editura Casa Cartii de Stiinta, Cluj Napoca, 1999, ISBN 973-9404-61-8
- [8]. 3. Hoyle, D., ISO 9000 Quality Systems Handbook, Fifth edition, Butterworth-Heinemann, 2005
- [9]. ***, Standardele: SR EN ISO 9000:2006, SR EN ISO 9001:2001, SR EN 9004:2001, SR EN
- 19011:2003, SR ISO/TS 16949:2004, SR EN ISO 22000:2005, ASRO
- [10]. http://www.bcub.ro/continut/unibib/calitatea_indicator.php

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Control systems engineering and other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	
10.4 Course	Minimum required	Written exam	60 %
	conditions for passing	Students receive for	
	the exam (mark 5): in	solving each a form with	
	accordance with the	3 subjects of theory and	
	minimum performance	an application.	
	standard it is necessary		
	to know the fundamental		
	notions required in the		
	subjects, without		
	presenting details on		
	them		
	For 10: thorough		
	knowledge of all subjects		
	is required		
10.5 Laboratory	- cuno tin e pentru nota	Test + aplica ie	40%
	5:	practic	
	utilizarea indicatorilor	La fiecare laborator	
	statistici de varia ie i de	studen ii primesc un test	

grupare;	i o not . De asemenea,	
cuno tin e pentru nota 6	fiecare student prime te	
realizarea fi ei de	o not pentru activitatea	
control prin m surare;	la laborator în timpul	
cuno tin e pentru nota 7:	semestrului i pentru	
realizarea histogramelor,	dosarul cu lucr rile de	
graficelor Gantt	laborator. Astfel rezult	
cuno tin e pentru nota 8:	o medie pentru laborator.	
analiza SWOT;	-	
cuno tin e pentru nota 9		
utilizarea corela iilor in		
metodele de analiza a		
calit ii		
cuno tin e pentru nota 10		
Interpretarea		
indicatorilor statistici ai		
procesului.		

10.6 Minimum performance standard:

Course: After completing the discipline students will be able to:

- After completing the discipline students will be able to:
- to configure a management system for an organization;
- to compose and analyze the factors that influence the quality of a product / service;
 - Participation in at least half of the courses.

SMC for a considered organizationLaboratory: the operating block scheme – system failure is drawn up, the implementation of the logical reliability scheme;

Ability to calculate and use statistical indicators for the calculation of statistical indicators for the statistical management of processes

- Participation in all laboratory work

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

08.09.2020

Date of endorsement in the department:

24.09.2020

Date of endorsement in the Faculty Board:

28.09.2020

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject			Hy	brid	Control Systems			
2.2 Holder of the subject			Le	ctur	er Phd. eng. Sanda D	ALE		
2.3 Holder of the academic		Le	ctur	er Phd. eng. Sanda D	ALE			
seminar/laboratory/project								
2.4 Year of study II 2.5 Semest		er	3	2.6 Type of the	Ex	2.7 Subject regime	THD	
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic seminar/laboratory/project	-/-/2
3.4 Total of hours from the curriculum	56	Of which: 3.5	28	3.6 academic	28
3.1 Total of hours from the carriedam		course		seminar/laboratory/project	20
Distribution of time	•	•	•		94 h
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					
Tutorials					
Examinations					
Other activities.					

3.7 Total of hours for individual study	94
3.9 Total of hours per semester	150
3.10 Number of credits	6

4. Pre-requisites (where applicable)

4.1 related to the	Knowledge of algebra, mathematical analysis, computer programming, modeling
curriculum	and simulation, system theory, control engineering, fuzzy systems and neural
	networks, advanced control systems
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- minimum 50% course attendance
the course	- the course can be held face-to-face or online
5.2.for the development of	- Students have to pick-up the project theme
the academic	- The students have to participate to all the project phases
seminary/laboratory/project	- project can be held face-to-face or online

(6. Spec	ific skills acquired
	• 1	C2. Design of process control, distributed control systems, process control intelligent methods, hybrid control systems, advanced unconventional process control competences.
	isversal s	CT2. Identification of roles and responsibilities in a plurispecialized team, making decisions and assigning tasks, applying techniques of effective relationships and team working. CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

(
7.1 The general	 Students to acquire general and thorough knowledge, aptitudes and skills 				
objective of the subject	related to the structure, typology, specific issues on analysis and design for				
	hybrid control systems and developing new methods of approach for them				
7.2 Specific objectives	The course has the aim to present the concepts related to the approach				
	methodology of hybrid control systems from various domains, of some				
	specific strategy on analysis and design for HCS				
	 During the project, the students develop and apply specific analysis and design 				
	methodologies for hybrid control systems of adaptive-interpolative type				

8. Contents*

o. Contents		
8.1 Course	Teaching methods	No. of hours/
		Observations
CAP 1. Introduction.		
1.1. Hybrid control systems. Definitions and concepts.		4h
1.2. Classifications for HCS. Types of HCS.		
CAP 2. Analog-discrete HCS		
2.1. Generalities	Free exposure,	4h
2.2. Aspects related to analog-discrete systems control	course presentation	411
2.3. Conclusions	on video projector,	
CAP 3. Intelligent hybrid systems	on the board or	
3.1. Generalities. Classifications.	online; debates on	
3.2. Neuro-symbolic systems	the exposed subjects	20h
3.3. Hybrid conventional-fuzzy systems		2011
3.4. Hybrid interpolative-adaptive systems		
3.5. Hybrid geno-neural control systems		

Bibliography

- 1. **S. Dale**, *Sisteme de control hibride*, noti e de curs.
- 2. **S. Dale,** Contribu ii la studiul sistemelor de conducere de tip interpolativ, Ed. Politehnica, Timi oara, 2006.
- 3. **D. Drechsel,** Regelbasierte Interpolation und Fuzzy Control, Vieweg, 1996.
- 4. **I. Dumitrache, C. Buiu,** Algoritmi genetici, Ed. Mediamira, Cluj-Napoca, 2000.
- 5. **A.V. Savkin, R..J. Evans,** *Hybrid Dynamical Control*, Birkhäuser, 2002.
- 6. Editori: **O. Castillo, P. Melin,** *Hybrid Intelligent Systems in Control, Pattern Recognition and Medicine*, Springer Verlag, 2020.

 Theme project presentation. DC motor characteristics study Mathematical modeling of the DC motor Hybrid control strategies study 	Students receive the theme of the project and the design methodology and	2h 2h 4h
3 Block-scheme for the adaptive-interpolative type hyprid	they go through the stages of the project, assisted by the teacher	4h 2h 6h 6h 2h

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found also in the curriculum of Automatic systems engineering or Informatics systems from other academic centers with accreditation in this field (Universitatea "Politehnica" Timi oara, Universitatea Tehnic Cluj-Napoca, etc), and the approach of specific problems for the hybrid systems control engineering is a stringent requirement of the employers in the branch ((Plexus, Celestica, Comau, Continental etc).)

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard, without presenting details For 10: throughout knowledge of all subjects	Oral exam: Students receive subjects to debate and they are trying to find solutions individually and as teams. The evaluation can be done face to face or online.	70%
10.5 Project	Minimum required conditions for passing the examination (grade 6): in accordance with the minimum performance standard: completion of all design stages, without final calculus For 10: going through all the design stages, with the completion of the calculations and the experimental data for validation done	Oral presentation Based on the presentation of the project carried out during the semester (in front of their colleagues and the teacher), the student is evaluated and receives a grade. The evaluation can be done face to face or online.	30%

10.8 Minimum performance standard:

Course:

- Knowledge of basic concepts related to the approach methodology of hybrid control systems, their typology and implementation posibilities
- Ability to identify, on particular cases, the proper hybrid control solutions Project:
- abilities regarding: analysis of a hybrid control solution from the utility and adaptability point of view in reduced complexity cases
- the capacity to adopt specific implementation methods for a hybrid control system for simple processes

Completion date: 04.09. 2020

<u>Date of endorsement in the department</u>: 24.09.2020

Date of endorsement in the Faculty

Board: 28.09.2020

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems / Master of Science in Engineering

2. Data related to the subject

2.1 Name of the subject				nova	tive technological p	rojec	ts	
2.2 Holder of the su	older of the subject Prof. PhD eng. Teodor Leuca							
2.3 Holder of the academic			Pro	Prof. PhD eng. Teodor Leuca				
laboratory/ project								
2.4 Year of study	II	2.5 Semeste	er	3	2.6 Type of the	Ex	2.7 Subject regime	SD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	4	of which: 3.2	2	3.3 academic project	1
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	28	3.6 academic project	14
		course			
Distribution of time					
Study using the manual, course support, bibliography and handwritten notes					30
Supplementary documentation using the library, on field-related electronic platforms and in					14
field-related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					30
Tutorials					0
Examinations					
Other activities.					

3.7 Total of hours for					
individual study					
3.9 Total of hours per	125				
semester					
3.10 Number of credits	5				

4. Pre-requisites (where applicable)

11 1 1 (·· · · · · · · · · · · · · · · · · ·
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- Mandatory presence at all project hours;
the academic	- The project can be carried out face to face or online
laboratory/project	- Students come with the observed laboratory works
	- A maximum of 2 works can be recovered during the semester (30%);

		- The frequency at project hours below 70% leads to the restoration of the discipline
6. Spec	ific skills acquired	
Professional skills	hybrid control syste C3. Implementatio	ess control, distributed control systems, process control intelligent methods, ems, advanced unconventional process control competences of control systems, software structure for real-time control applications, erfaces, artificial vision, automated manufacturing systems
Transversal skills	achieve the goals a time spent for finis TC2.Identify the r	apply the principles, norms and values of professional ethics in order to and identify the objectives, the available resources, the steps to be done and hing the works, the deadlines, and the risks involved. oles and responsibilities of each member of a pluri-disciplinary team and a and relational techniques inside the team.

7. The objectives of the discipline (resulting from the grid of the specific competences acquired)

7.1 The	♣ Implementing theories, ideas on the theoretical and design bases of innovation and
general	technology management.
objective of	
the subject	* Training the necessary competencies for the objective assessment and retention by
	master students of the issue of innovation and technology management.
7.2 Specific	
objectives	

8. Contents*

8.1 Course	Teaching methods	No. of
		hours/
		Observations
1. Key aspects of innovation management	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
2. Innovation - as a management process	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
3. Elaboration of the necessary framework for the innovation strategy	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
4. The position of the national and competitive environment	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

5. Pathways: exploitation of technological trajectories	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
6. Processes: integration for strategic learning	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
7. The cognitive process based on market realities	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
8. Innovation and research and development in a European and global context	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
9. Project management: basics, definitions and concepts	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
10. Research project management: practices and specificities	Free exposure, with the presentation of the course with video projector, on the board or online	3 h
11. Center for research and technological engineering in conversion of electromagnetic energy	Free exposure, with the presentation of the course with video projector, on the board or online	2 h
12. Euro / regional scientific integration center Oradea / Debrecen	Free exposure, with the presentation of the course with video projector, on the board or online	2 h

Bibliography

- 1.Abudi, Gina (2010): *Project Managers Need Ledership Skills*, URL: http://www.projectsmart.co.uk/project-managers-need-leadership-skills.html, site accesat ultima dat la: 24.01.2012.
- 2. Ciobotaru, Daniela / Milo, Teodor / Ciobotaru, Dan (2010): *Triunghiul de aur al realiz rii unui proiect tehnic: tehnic versus calitate, costuri de realizare, termene de execu ie*, în: Buletinul AGIR, nr. 2-3, aprilie-septembrie, pp. 176-180.
- 3.Holzbaur, Ulrich D. (2009): *Project Management in Research*, în: Lategan, Laetus O. K. / Holzbaur, Ulrich D. (eds.), Managing applied research: theories, cases and perspectives, Aalener Schriften zur Betriebswirtschaft, pp. 40-52.

- 4.Pollack, Julien (2006): *The changing paradigms of project management*, în: International Journal of Project Management, doi: 10.1016/j.ijproman.2006.08.002.
- 5. Thomas, Graeme / Fernández, Walter (2008): Success in IT projects: A matter of definition?, în: International Journal of Project Management, 26, pp. 733-742.
- *Anexa A, Echipamente inovative de înc lzire prin inducție, Teze de doctorat coordonate de profesor dr. ing. Teodor LEUCA, Biblioteca Universit ții din Oradea
- **Anexa B, Echipamente inovative de înc lzire în câmp de înalt frecvenţ, Teze de doctorat coordonate de profesor dr. ing. Teodor LEUCA, Biblioteca Universit ții din Oradea.

8.2 Academic project	Teaching methods	No. of
		hours/ Observations
 Innovative technologies in lighting Innovative electricity production systems - photovoltaic panels Innovative electricity production systems - wind turbines Control by measurement. Completion of the control sheet Smart buildings Communication protocols in electrical installations Electrothermal induction, radio frequency and microwave systems Smart relays The new generation of low voltage circuit breakers Computer and robotics systems microwave 	Master students receive the design theme and design methodology and under the guidance of the teacher perform the project stages	10h
Conclusions		2h
Project support		2h

Bibliography

- 1. [B loiu, Liviu, Mihail i Fr sineanu, Ioan Gestiunea inova iei, Ed. Economic, Bucure ti, 2001
- 2. Christensen, Clayton M The innovators dilemma, Harper Business Essentials, New York, 2000,
- 3. Phillips, Fred Y. Market oriented Technology Management Innovating for Profit in Entrepreneurial Times, Springer-Velag, Heidelberg, 2001
- 4. Tidd, Joe; Bessant, John i Pavitt, Keith Managing Innovation, John Wiley & Sons Ltd, Chichester, West Sussexd, 2001
- 5. Utterback, James M Mastering the dynamics of innovation, Harvard Business School Press, Boston, 1996
- 6. Von Stamm, Bettina Managing Innovation, Desing & Creativity, John Wiley & Sons Ltd, Chichester, West Sussexd, 2003

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

• The content of the discipline can be found in the curriculum of Advanced Control Systems from other university centers that have accredited these specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of the types of electric drives and their operation and design is a stringent requirement of employers in the field (Comau, Faist Mekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods The evaluation can be done face-to-face or online	10.3 Percent from the final mark
10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the	Oral examination Students sustain an oral exam	60 %

10.5 Project	minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10: thorough knowledge of all subjects is required - for grade 6, going through the design stages, without deepening the calculations - for grade 10, completion of all design stages, with completion of calculations and power supply and control	Oral support Following the presentation of the project made during the semester, each master student receives a grade, separate from the exam.	40%
	power supply and control diagrams		

10.6 Minimum performance standard:

- Critical evaluation of the strategic performance of the teams.
- Manifesting autonomy in choosing a learning route and demonstrating understanding of learning processes.
- Communicating project results, methods and key principles to an audience of specialists and non-specialists, using appropriate techniques.
- Careful observation, reflection and decision-making in order to change social norms and interpersonal relationships.
- Problem solving by integrating complex, sometimes incomplete, sources of information in new and unfamiliar contexts.
- Demonstration of experience in operational interactions for change management in a complex context.
- Manifestation of an active behavior towards a series of social, scientific and ethical aspects that appear in work or study.

Completion date:

05.09.2020

Date of endorsement in the department: 24.09.2020

Date of endorsement in the Faculty Board:

28.09.2020

SUBJECT DESCRIPTION

1. Data related to the study program

1.1 Higher education institution	UNIVERSITY OF ORADEA
1.2 Faculty	Faculty of Electrical Engineering and Information Technology
1.3 Department	Department of Control Systems Engineering and Management
1.4 Field of study	Control systems engineering
1.5 Study cycle	Master (2 nd cycle)
1.6 Study program/Qualification	Advanced Control Systems/ Master of Science in Engineering

2. Datarelated to the subject

2.1 Name of the subject			Project development technology					
2.2 Holder of the subject			Lect. PhD eng. Coroiu Laura					
2.3 Holder of the academic		Le	Lect. PhD eng. Coroiu Laura					
laboratory								
2.4 Year of study II 2.5 Semester			er	1	2.6 Type of the	Ex	2.7 Subject regime	SYD
					evaluation			

3. Total estimated time (hours of didactic activities per semester)

3.1 Number of hours per week	3	of which: 3.2	1	3.3 academic laboratory	2
		course			
3.4 Total of hours from the curriculum	42	Of which: 3.5	14	3.6 academiclaboratory	28
		course			
Distribution of time					hou
					rs
Study using the manual, course support, bibliography and handwritten notes					
Supplementary documentation using the library, on field-related electronic platforms and in field-					30
related places					
Preparing academic seminaries/laboratories/ themes/ reports/ portfolios and essays					36
Tutorials					
Examinations					
Other activities.					

3.7 Total of hours for	108
individual study	
3.9 Total of hours per	150
semester	
3.10 Number of credits	6

4. Pre-requisites(where applicable)

11 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.1 related to the	(Conditions)
curriculum	
4.2 related to skills	

5. Conditions (where applicable)

5.1. for the development of	- Attendance at least 50% of the courses
the course	- The course can be held face to face or online
5.2.for the development of	- The project can be carried out face to face or online
the academic	- The frequency at project hours below 70% leads to the restoration of the
seminary/laboratory/project	discipline

6. Specific skills acquired			
	C5. Preparation and implementation of project management in automation and applied informatics and related fields, project management, application of knowledge engineering quality legislation automated systems		
unsvers	CT2. Identify roles and responsibilities in a multi-specializedteam, decisions making and assigning tasks, applying relationshipstechniques and efficient work within the team CT3. Identify training opportunities and efficient use of resources and learning techniques for their own development		

7. The objectives of the discipline(resulting from the grid of the specific competences acquired)

	1 (6 6 1 1 1 /
7.1 The general objective of the subject	• The discipline has as objective familiarizing the students from the master's specialization Advanced Control Systems, with the Project development technology and Management
7.2 Specific objectives	 The course aims to present the theoretical elements of the Project development technology. The project provides the necessary knowledge to the students about Project manager techniques and tools.

8. Contents*

8. Contents*		
8.1 Course	Teaching	No. of hours/
	methods	Observations
	Free exposure,	-
1. Introduction.	with the	2h
Construction of the project proposal	presentation of	
1 3 1 1	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
2. Organizing projects on project phases.	with the	2h
The internal organizational structure of the projects.	presentation of	
	the course with	
	video projector,	
	on the board or	
	online	
	Free exposure,	
3. Project management tasks	with the	2h
Project marketing	presentation of	211
Risk management	the course with	
Nisk management	video projector,	
	on the board or	
	online	
	Free exposure,	
4. Controlul i asigurarea calit ii	with the	2h
Raportarea rezultatelor proiectelor	presentation of	
1	the course with	
	video projector,	
	on the board or	
	online	

5. Project manager techniques and tools The SWOT analysis	Free exposure, with the presentation of the course with video projector, on the board or online	2h
6. Evaluation techniques Planning techniques Project monitoring	Free exposure, with the presentation of the course with video projector, on the board or online	2h
7. Redactarea raportului tehnic Raportarea Terminarea proiectelor	Free exposure, with the presentation of the course with video projector, on the board or online	2h

Bibliography

- 1. Laura Coroiu, Managementul proiectelor, curs în format electronic, 2010;
- 2.D. Isoc, Managementul proiectelor de cercetare- Proiecte cu finan are public na ional i interna ional . Capitalizarea i gestiunea propriet ii intelectuale. Ghid practic. Editura Risoprint Cluj Napoca 2007;
- 3. Mariana Mocanu, Carmen Schuster, *Managementul proiectelor Ed a II-a*, Colec ia afaceri, Editura All Beck, Bucure ti, 2004;
- 4.O. Nicolescu, E. Burdu ,... Ghidul managerului eficient, Vol 1, Editura Tehnic Bucure ti 1993;
- 5.J.L. Koorey, D.B. Medley, *Management Information Systems*, South-Western Publishing Co. Cincinnati, Ohio, 1986; 6.K.C.Laudon, J.Price Laudon, *Management Information Systems*, A Contemporary Perspective, Macmillan Publishing Company, 1988.

company, 1900.	I	
8.2 Academic project	Teaching	No. of hours/
	methods	Observations
	Students receive	
Project manager techniques and tools.	the project theme	28h
Case studies	and design	
	methodology and	
	under the	
	guidance of the	
	teacher perform	
	the project stages	

Bibliography

- 1. **Laura Coroiu**, *Managementul proiectelor*, curs în format electronic, 2010;
- 2. Lonnie Pacelli, Consilierul managerului de proiect, Meteor Press 2007, ISBN 978-973-728-215-6

9. Corroboration of the discipline content with the expectations of the representatives of epistemological community, professional associations and representative employers in the field related to the program

The content of the discipline can be found in the curriculum of Advanced Control Systems in Engineering from other university centers that have accredited similar specializations (Technical University of Cluj-Napoca, University of Craiova, "Politehnica" University of Timisoara, Gh. Asachi University of Iasi, etc.) and knowledge of Project management is a stringent requirement of employers in the field (Comau, FaistMekatronics, Celestica, GMAB, etc.).

10. Evaluation

Type of activity	10.1 Evaluation criteria	10.2 Evaluation methods	10.3 Percent from the
		The evaluation can be	final mark
		done face-to-face or	
		online	

10.4 Course	Minimum required conditions for passing the exam (mark 5): in accordance with the minimum performance standard it is necessary to know the fundamental notions required in the subjects, without presenting details on them For 10:thorough knowledge of all subjects is required	Oral examination Students receive for solving each a form with 3 subjects of theory and an application.	60 %
10.5Project	Minimum required conditions for promotion	Oral presentation Following the	40%
	(grade 6): a brief	presentation of the	
	overview of the design	project completed during	
	stages	the semester, each	
	For 10: going through all	student receives a grade.	
	the design stages, with	student receives a grade.	
	the completion of the		
	calculations		

10.6 Minimum performance standard:

Course: Solving and explaining problems of medium complexity, associated with the discipline of Project development technology.

Project: Elaboration of a business plan that aims at the management of the enterprise using knoledge of Project development technology.

The timely solution, in individual activities and group activities, in conditions of qualified assistance, of the problems that require the application of principles and rules respecting the norms of professional deontology.

Responsible assumption of specific tasks in multi-specialized teams and efficient communication at institutional level.

Elaboration and argumentative support of the application of a personal professional development plan.

Completion date:

04.09.2020

Date of endorsement in the department: 24.09.2020

Date of endorsement in the Faculty

Board:

28.09.2020